Skip to main content
Log in

New Tri- and Pentanuclear Osmium Clusters from [Os3(CO)10(NCMe)2] and Pyrrolidine: Reactivity and X-ray Structure of [HOs3(CO)9(µ,κ2-N=C(CH3)C=NCH2CH2CH2)] and [H3Os5(CO)14(µ,η11-N=CCH2CH2CH2)]

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

[Os3(CO)10(NCMe)2] reacts with pyrrolidine in refluxing benzene to give the known clusters [HOs3(CO)10(µ,κ1-NCH2CH2CH2CH2)] (1) and [HOs3(CO)10(µ,η11-C=NCH2CH2CH2)] (2), in addition to the new triosmium cluster [HOs3(CO)9(µ,κ2-N=C(CH3)C=NCH2CH2CH2)] (5), whose ancillary heterocyclic ligand is formed by C–C coupling involving the nitrile carbon of NCCH3 and the α-carbon of pyrrolidine. Refluxing 2 in n-octane furnishes the known µ3-imidoyl cluster [HOs3(CO)9311-C=NCH2CH2CH2)] (4) along with the new pentaosmium cluster [H3Os5(CO)14(µ,η11-C=NCH2CH2CH2)] (6) which exhibits a metallic core based on an edge-bridged tetrahedron. The doubly metalated pyrrolidine ligand ligates one of the apical osmium atoms in the Os4 tetrahedron and the bridging Os(CO)3 moiety in 6. The bonding in clusters 5 and 6 has been investigated by electronic structure calculations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2

Similar content being viewed by others

References

  1. C. C. Yin and A. J. Deeming (1977). J. Organomet. Chem. 133, 123.

    Article  CAS  Google Scholar 

  2. R. D. Adams and N. M. Golembeski (1978). Inorg. Chem. 17, 1969.

    Article  CAS  Google Scholar 

  3. S. Aime, R. Gobetto, F. Padovan, M. Botta, E. Rosenberg, and R. W. Gellert (1987). Organometallics 6, 2074.

    Article  CAS  Google Scholar 

  4. G. Suss-Fink, T. Jenke, H. Heitz, M. A. Pellinghelli, and A. Tiripicchio (1989). J. Organomet. Chem. 379, 311.

    Article  CAS  Google Scholar 

  5. E. Rosenberg, S. E. Kabir, K. I. Hardcastle, M. Day, and E. Wolf (1990). Organometallics 9, 2214.

    Article  CAS  Google Scholar 

  6. M. Day, S. Hajela, S. E. Kabir, M. Irving, T. McPhillips, E. Wolf, K. I. Hardcastle, L. Milone, E. Rosenberg, R. Gobetto, and D. Osella (1991). Organometallics 10, 2743.

    Article  CAS  Google Scholar 

  7. M. Day, D. Espitia, K. I. Hardcastle, S. E. Kabir, T. McPhillips, E. Rosenberg, R. Gobetto, L. Milone, and D. Osella (1993). Organometallics 12, 2309.

    Article  CAS  Google Scholar 

  8. S. E. Kabir, M. Day, M. Irving, T. McPhillips, H. Minassian, E. Rosenberg, and K. I. Hardcastle (1991). Organometallics 10, 3997.

    Article  CAS  Google Scholar 

  9. S. E. Kabir, E. Rosenberg, M. Day, K. I. Hardcastle, and M. Irving (1994). J. Cluster Sci. 5, 481.

    Article  CAS  Google Scholar 

  10. M. Day, D. Espitia, K. I. Hardcastle, S. E. Kabir, E. Rosenberg, R. Gobetto, L. Milone, and D. Osella (1991). Organometallics 10, 3550.

    Article  CAS  Google Scholar 

  11. M. Day, W. Freeman, K. I. Hardcastle, M. Isomaki, S. E. Kabir, T. McPhillips, E. Rosenberg, L. G. Scott, and E. Wolf (1992). Organometallics 11, 3376.

    Article  CAS  Google Scholar 

  12. S. E. Kabir, E. Rosenberg, M. Day, and K. I. Hardcastle (1994). Organometallics 13, 4437.

    Article  CAS  Google Scholar 

  13. R. Gobetto, K. I. Hardcastle, S. E. Kabir, L. Milone, N. Nishimura, M. Botta, E. Rosenberg, and M. Yin (1995). Organometallics 14, 3068.

    Article  CAS  Google Scholar 

  14. S. E. Kabir, E. Rosenberg, L. Milone, R. Gobetto, D. Osella, M. Ravera, T. McPhillips, M. W. Day, D. Carlot, S. Hajela, E. Wolf, and K. Hardcastle (1997). Organometallics 16, 2674.

    Article  CAS  Google Scholar 

  15. S. E. Kabir, E. Rosenberg, M. Day, K. Hardcastle, E. Wolf, and T. McPhillips (1995). Organometallics 14, 721.

    Article  CAS  Google Scholar 

  16. B. F. G. Johnson, J. Lewis, and D. A. Pippard (1981). J Chem Soc, Dalton Trans. https://doi.org/10.1039/dt9810000407.

    Article  Google Scholar 

  17. Bruker, SAINT (8.37A), Bruker AXS Inc., Madison, Wisconsin, USA, 2015.

  18. Bruker, SADABS-2014/5, Bruker AXS Inc., Madison, Wisconsin, USA, 2014.

  19. G. M. Sheldrick (2008). Acta Crystallogr. A 64, 112.

    Article  CAS  PubMed  Google Scholar 

  20. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.

    Article  CAS  Google Scholar 

  21. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Acc. 120, 215.

    Article  CAS  Google Scholar 

  22. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian, Inc., Wallingford CT, 2016., Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford, CT, USA, 2009.

  23. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss (1990). Theor. Chim. Acta 77, 123.

    Article  CAS  Google Scholar 

  24. G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. Mantzaris (1988). J. Chem. Phys. 89, 2193.

    Article  CAS  Google Scholar 

  25. G. A. Petersson and M. A. Al-Laham (1991). J. Chem. Phys. 94, 6081.

    Article  CAS  Google Scholar 

  26. S. Grimme, S. Ehrlich, and L. Goerigk (2011). J. Comp. Chem. 32, 1456.

    Article  CAS  Google Scholar 

  27. NBO Version 3.1, E.D. Glendening, A.E. Reed, J.E. Carpenter, and F. Weinhold

  28. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  29. K. B. Wiberg (1968). Tetrahedron 24, 1083.

    Article  CAS  Google Scholar 

  30. JIMP2, version 0.091, a free program for the visualization and manipulation of molecules: M.B. Hall, R.F. Fenske, Inorg. Chem. 11 (1972) 768

  31. J. Manson, C.E. Webster, M.B. Hall, Texas A&M University, College Station, TX, 2006, http://www.chem.tamu.edu/jimp2/index.html.

  32. T. A. Albright, J. K. Burdett, and M. H. Whangbo, Orbital Interactions in Chemistry (John Wiley, New York, 1985).

    Google Scholar 

  33. D. M. P. Mingos and D. J. Wales, Introduction to Cluster Chemistry (Prentice-Hall, Englewood Cliffs, NJ, 1990).

    Google Scholar 

  34. Cluster 6 may also be viewed within a localized bonding model where all five osmium atoms contains 18-electrons with eight 2c,2e Os-Os bonds with a 74-valence electrons.

  35. R. Bau and M. H. Drabnis (1997). Inorg. Chim. Acta 259, 27.

    Article  CAS  Google Scholar 

  36. R. G. Teller and R. Bau (1981). Struct. Bonding 44, 1.

    Article  CAS  Google Scholar 

  37. J. March, Advanced Organic Chemistry (Wiley, New York, 1985).

    Google Scholar 

  38. L. Yang, V. N. Nesterov, X. Wang, and M. G. Richmond (2012). J. Clust. Sci. 23, 685.

    Article  CAS  Google Scholar 

  39. J. C. Sarker, K. M. Uddin, M. S. Rahman, S. Ghosh, T. A. Siddiquee, D. A. Tocher, M. G. Richmond, G. Hogarth, and S. E. Kabir (2014). Inorg. Chim. Acta 409, 320.

    Article  CAS  Google Scholar 

  40. S. A. Begum, M. A. H. Chowdhury, S. Ghosh, D. A. Tocher, M. G. Richmond, L. Yang, K. I. Hardcastle, E. Rosenberg, and S. E. Kabir (2018). RSC Adv. 8, 32672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. P. J. Dyson and J. S. McIndoe, Transition Metal Carbonyl Cluster Chemistry (Gordon and Breach Science Publishers, Singapore, 2000).

    Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Education, the Government of the People’s Republic of Bangladesh (SG and SEK) and the Robert A. Welch Foundation (Grant B-1093-MGR) is acknowledged. The DFT calculations were performed at UNT through CASCaM, which is an NSF-supported facility (CHE-1531468).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shishir Ghosh or Shariff E. Kabir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10876_2022_2305_MOESM1_ESM.docx

Supplementary file1 (DOCX 2513 kb) Contour plots of the HOMO and LUMO for clusters 5 (A) and 6 (B) (Figure S1). Atomic coordinates and energies for all DFT-optimized structures are available upon request (MGR)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, S.A., Aktar, M.A., Jahan, I. et al. New Tri- and Pentanuclear Osmium Clusters from [Os3(CO)10(NCMe)2] and Pyrrolidine: Reactivity and X-ray Structure of [HOs3(CO)9(µ,κ2-N=C(CH3)C=NCH2CH2CH2)] and [H3Os5(CO)14(µ,η11-N=CCH2CH2CH2)]. J Clust Sci 34, 1391–1399 (2023). https://doi.org/10.1007/s10876-022-02305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02305-7

Keywords

Navigation