Skip to main content
Log in

Chemistry of Fe-Ti oxide minerals in the Hobenzan granitic complex, SW Japan: Subsolidus reduction in relation to base metal mineralization

Chemismus von Fe-Ti Oxiden des Hobenzan Granitkomplexes, SW Japan: Subsolidus Reduktion und ihre Beziehung zu metallischen Vererzungen

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The mineralized stock of the Hobenzan granitic complex is composed of tonalite and a continuous differentiation series of biotite-hornblende granodiorite, hornblende biotite granite and biotite granite. Texture and mineral chemistry of the Fe-Ti oxide minerals in the Hobenzan granitic complex exhibit two different processes of magma evolution: one is an oxyexsolution process related to the magmatic and high temperature subsolidus stage, and the other is a reduction process of consecutive subsolidus stage. Rocks distributed in the northern part of the granitic complex preserve well the oxyexsolution process and show higher magnetic susceptibility, whereas those in the southern part of the complex, record the reduction process and show lower magnetic susceptibility.

The magnetite-ilmenite geothermometer indicates temperatures of ca. 730°C for the oxide pairs of the early stage. Oxygen fugacity of one to three orders of magnitude higher than the annite-sanidine-magnetite (ASM) univariant curve, and an aqueous sulfur composition,fSO2/fH2S, of around 1.0 is indicated. This first stage corresponds to the crystallization of phenocrystic hornblende and plagioclase at depth. At about 700°C crystallization changed to biotite, K-feldspar and quartz, and continued to about 600°C. ThefO2 during this second stage is buffered by the ASM assemblage. This second stage defines the oxyexsolution process. Below about 600°C, a reduction process, caused by assimilation of carbonaceous matter of country rocks, overprinted the southern part of the complex. Oxide pairs show that thefO2 is about four orders of magnitude lower than the ASM univariant curve, andfSO2/fH2S is 10−8.0 or less at 550°C for this reduced assemblage. The drastic change in composition of sulfur-bearing aqueous species may be one of the principal factors allowing base metal mineralization.

Zusammenfassung

Der mineralisierte Hobenzan Granitkomplex setzt sich aus Tonaliten und einer kontinuierlichen Differentiationsserie, bestehend aus Biotit-Hornblende-Granodioriten, Hornblende-Biotit-Graniten und Biotit-Graniten, zusammen. Die Texturen und die Mineralchemie der Fe-Ti Oxide belegen zwei unterschiedliche Prozesse bei der Entwicklung des Hobenzan Granitkomplexes: einerseits einen Oxyexsolution-Prozeß, während des magmatischen und hochtemperierten Subsolidus-Stadiums, andererseits einen Reduktionsprozeß während des tiefertemperierten Subsolidus-Stadiums. Gesteine im nördlichen Hobenzan Komplex belegen vor allem den Oxyexsolution Prozeß und zeigen höhere magnetische Suszeptibilität, während jene im südlichen Teil den Reduktionsprozeß widerspiegeln und niedrigere magnetische Suszeptibilität zeigen.

Das Magnetit-Ilmenit Geothermometer ergab Temperaturen von ca. 730°C für Oxidpaare des Frühstadiums. Die Sauerstoff Fugazität liegt um eine bis drei Größenordnungen über der univarianten Reaktionskurve Annit-Sanidin-Magnetit (ASM), und dasfSO2/fH2S Verhältnis der wässrigen Schwefelkomplexe bei ca. 1.0. Dieses Frühstadium korrespondiert mit der Kristallisation von Horblende und Plagioklas im Magma in größerer Tiefe. Ab ca. 700°C erfolgt die Kristallisation von Biotit, Alkalifeldspat und Quarz bis etwa 600°C, wobeifO2 durch die ASM Mineralassoziation gepuffert wird. Dieses zweite Stadium wird als Oxyexsolution Prozeß beschrieben. Unter 600°C erfolgte eine Reduktion durch Assimilation von kohlenstoffreichem Material vor allem im südlichen Teil des Komplexes. Oxidpaare dieses Stadiums belegen, daßfO2 um etwa vier Größenordnungen unterhalb des ASM Puffers liegt, undfSO2/fH2S ist ⩽ 10−8 bei 550°C. Die dramatische Änderung in der Zusammensetzung der Schwefelkomplexe in den Lösungen wird als der Hauptfaktor für die Bildung der Erzmineralisationen angesehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson AT (1968) Oxidation of the LaBlache Lake titaniferous deposit, Quebec. J Geol 76: 528–547

    Google Scholar 

  • Anderson JL (1980) Mineral equilibria and crystallization condition in the late Precambrian Wolf River rapakivi massif, Wisconsin. Am J Sci 280: 298–332

    Google Scholar 

  • Barnes HL (1979) Solubility of ore minerals. In:Barnes HL(ed) Geochemistry of hydrothermal ore deposits, 2nd ed. John Wiley and Sons, New York, pp 404–460

    Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5: 310–357

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In:Barnes HL(ed) Geochemistry of hydrothermal ore deposits, 2nd ed. John Wiley and Sons, New York, pp 71–136

    Google Scholar 

  • Burnham CW, Ohmoto H (1980) Late-stage processes of felsic magmatism. Mining Geol [Spec Issue] 8: 1–12

    Google Scholar 

  • Burnham CW, Holloway JR, Davis NF (1969) Thermodynamic properties of water to 1,000°C and 10,000 bars. Geol Soc Am [Spec paper] No 132, 96 pp

  • Carmichael ISE (1967) The iron-titanium oxide of salic volcanic rocks and their associated ferro-magnesian silicates. Contrib Mineral Petrol 14: 36–64

    Google Scholar 

  • Czamanske GK, Ishihara S, Atkin SA (1981) Chemistry of rock-forming minerals of the Cretaceous-Paleogene batholith in southwestern Japan and implications for magma genesis. J Geophys Res 86: 10431–10469

    Google Scholar 

  • Eugster HP (1957) Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. J Chem Phys 26: 1760–1761

    Google Scholar 

  • Frost BR (1985) On the stability of sulfides, oxides and native metals in serpentinite. J Petrol 26: 31–63

    Google Scholar 

  • Frost BR, Lindsley DH (1991) Occurrence of iron-titanium oxides in igneous rocks. In:Lindsley H (ed) Reviews in mineralogy 25. Mineral Soc Am, pp 433–468

  • Fujii A (1972) Ota Formation of the Yamaguchi Group in the Akiyoshi district. J Geol Soc Jpn 78: 309–321 (in Japanese with English abstract)

    Google Scholar 

  • Fujimaki H, Aoki K (1980) Quantitative microanalyses of silicates, oxides and sulfides using an energy-dispersive type electron probe. Sci Rept Tohoku Univ, Ser 111, 14: 261–268

    Google Scholar 

  • Ghiorso MS, Sack RO (1991) Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib Mineral Petrol 108: 485–510

    Google Scholar 

  • Haggerty SE (1976) Opaque mineral oxides in terrestrial igneous rocks. In:Rumble D (ed) Oxide minerals. Mineral Soc Am, Short Course Notes, Hg 101-300. Southern Printing Co, Blacksburg

    Google Scholar 

  • Imaoka T, Nakashima K, Murakami N (1982) Iron-titanium oxide minerals of Cretaceous to Paleogene volcanic rocks in western Chugoku district, southwest Japan. J Jpn Assoc Min Petr Econ Geol 77: 235–255

    Google Scholar 

  • Imaoka T, Nakashima K, Murakami N, Matsuda T (1985) Fe-Ti oxide minerals from plutonic rocks associated with Paleogene cauldrons in West San-in district, Japan. J Fac Lib Arts, Yamaguchi Univ 19: 20–31 (in Japanese with English abstract)

    Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol 27: 293–305

    Google Scholar 

  • Ishihara S (1981) Granitoid series and mineralization. Econ Geol (75th Anniv Vol): 414–484

  • Ishihara S, Sato K, Terashima S (1984) Chemical characteristics and genesis of mineralized, intermediate-series granitic pluton in the Hobenzan area, western Japan. Mining Geol 34: 401–418

    Google Scholar 

  • Kawano Y, Ueda Y (1966) K-A dating on the igneous rocks in Japan, V. Granitic rocks in southwest Japan. J Jpn Assoc Min Petr Econ Geol 56: 191–211 (in Japanese with English abstract)

    Google Scholar 

  • Mariko T, Tanaka K, Itaya T (1975) Oxide and sulfide minerals in pelitic and psammitic schists from the Nagatoro district, Saitama Prefecture, Japan. J Jpn Assoc Min Petr Econ Geol 70: 413–424

    Google Scholar 

  • Murata M, Itaya T, Ueda Y (1983) Sulfide and oxide minerals from the Ohmine granitic rocks in Kii Peninsula, Central Japan, and their primary paragenetic relations. Contrib Mineral Petrol 84: 58–65

    Google Scholar 

  • Nakashima K (1988) Acid magmatism and related mineralization - a case study. Hobenzan granitic complex, Yamaguchi Prefecture, southwest Japan, 1. Petrochemistry. Bull Yamagata Univ (Natural Science) 12(1): 63–86

    Google Scholar 

  • Nakashima K, Watanabe M, Soeda A (1981) Mineralogy of the Cu-Bi-W-Co-As-S mineralization associated with the Hobenzan granitic complex, Yamaguchi Prefecture, southwest Japan. J Jpn Assoc Min Petr Econ Geol 76: 1–16

    Google Scholar 

  • Nakashima K, Imaoka T, Murakami N (1984) Petrography, bulk chemical composition and magnetic susceptibility of the Hobenzan granitic complex, Yamaguchi Prefecture, southwest Japan. J Jpn Assoc Min Petr Econ Geol 79: 370–386 (in Japanese with English abstract)

    Google Scholar 

  • Ohmoto H, Kerrick D (1977) Devolatilization equilibria in graphitic systems. Am J Sci 277: 1013–1044

    Google Scholar 

  • Rose AW, Burt DM (1979) Hydrothermal alteration. In:Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. John Wiley and Sons, New York, pp 173–235

    Google Scholar 

  • Shibata K, Ishihara S (1979) Rb-Sr whole-rock and K-Ar mineral ages of granitic rocks in Japan. Geochem J 13: 113–119

    Google Scholar 

  • Shibata K, Nishimura Y (1989) Isotopic ages of the Sangun crystalline schists, southwest Japan. Mem Geol Soc Japan 33: 317–341 (in Japanese with English abstract)

    Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66: 1189–1201

    Google Scholar 

  • Streckeisen AL (1973) Plutonic rocks, classification and nomenclature recommended by the IUGS subcommission on the systematics of igneous rocks. Geotimes 18: 25–30

    Google Scholar 

  • Tainosho Y (1982) Fe-Ti oxide minerals of the late Mesozoic to early Tertiary granitic rocks in eastern Chugoku and Kinki districts, southwest Japan. J Jpn Assoc Min Petr Econ Geol 77: 387–402 (in Japanese with English abstract)

    Google Scholar 

  • Tainosho Y, Houma H, Tazaki K (1979) Mineral chemistry of granitic rocks in eastern Chugoku, southwest Japan. Mem Geol Soc Japan 17: 99–112 (in Japanese with English abstract)

    Google Scholar 

  • Tsusue A, Ishihara S (1974) The iron-titanium oxides in the granitic rocks of southwest Japan. Mining Geol 24: 13–30 (in Japanese with English abstract)

    Google Scholar 

  • Waldbaum DR, Thompson JB (1969) Mixing properties of sanidine crystalline solutions, IV. Phase diagrams from equations of state. Am Mineral 54: 1274–1298

    Google Scholar 

  • Wones DR (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geol 31: 191–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, K. Chemistry of Fe-Ti oxide minerals in the Hobenzan granitic complex, SW Japan: Subsolidus reduction in relation to base metal mineralization. Mineralogy and Petrology 58, 51–69 (1996). https://doi.org/10.1007/BF01165763

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165763

Keywords

Navigation