Skip to main content
Log in

Geochemistry of polymetamorphic ultramafics (Major, Trace, Noble and Rare Earth Elements): An example from the Helvetic basement, Central Alps, Switzerland

Geochemie von polymetamorphen Ultramafiten (Haupt-, Spuren-Elemente, Edelmetalle und Seltene Erden): Ein Beispiel vom Helvetischen Grundgebirge (Zentralalpen, Schweiz)

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Polymetamorphic ultramafic rocks in orogenic terranes rarely preserve relic structures or minerals from their former mantle stages. The determination of their protoliths and their tectonic evolution by chemical discrimination methods is often difficult due to possible metasomatic processes. Ultramafics of the pre-Variscan Helvetic basement (Central Alps, Switzerland) have been investigated geochemically to address these problems. These ultramafics are partially to completely serpentinised. According to field observations several ultramafic lenses were part of an ophiolite suite, but distinct cumulate ultramafic lenses were also recognized. CIPW norms indicate that large parts of the ultramafics are harzburgites, but metasomatic CaO depletion may have produced an overestimation of the importance of the harzburgite protoliths. Major element distributions suggest a depleted mantle protolith. Close to chondritic or slightly depleted REE patterns are characteristics of the studied samples. The REE normalized patterns confirm the presence of harzburgites, lherzolites und cumulates. In some samples light REE enrichment processes have occurred. The noble metal concentrations are both affected (Pt-Pd-Au) und unaffected (Ir-Os-Ru) by melt infiltration processes. They suggest the presence of undepleted or slightly enriched harzburgites und more differentiated, probably cumulate ultramafics. Information obtained by different chemical elements leads to contrasting results. REE and noble metals show enrichment inconsistent with the major element depletion. Refertilization of depleted ultramafics is proposed.

Zusarnmenfassung

Ultramafische Gesteine aus polymetamorphen orogenetischen Terrains enthalten selten Strukturen und Mineralien als Relikte aus ihren Mantelstadien. Bestimmung ihrer Protolithe und deren tektonischen Entwicklung durch geochemische Parameter wird durch metasomatische Prozesse erschwert. Ultramafite aus dem prävariszischen Sockel der Schweizer Zentralalpen wurden geochemisch untersucht, um die Aussagekraft dieser Parameter zu bestimmen. Die untersuchten Gesteine sind teilweise bis völlig serpentinisiert. Aufgrund der Felduntersuchungen wurden die Ultramafite als Teile einer ophiolithischen Suite klassifiziert, aber ultramafische Kumulate anderer Entstehungsgeschichte konnten unterschieden wurden. CIPW-Norm Berechnungen zeigen, daß Harzburgite den größten Anteil der Proben ausmachen, aber metasomatische Abreicherung an Caokönnte die Bedeutung der Harzburgite als Protolithe überbewerten. Haupt- und Spurenelemente weisen auf einen abgereicherten Mantel als Ausgangsgesteinhin. Fast chondritische bzw. leicht abgereicherte Seltene Erden verteilungsmuster sind charakteristisch. Sic belegen auch die harzburgitische, lherzolithische bzw. kumulative Natur der untersuchten Gesteine. Die Edelmetallkonzentrationen sind teilweise primär (Ir, Os, Ru) sowie beeinflußt durch Schmelzinfiltrationen (Pr, Pd und Au). Die Verteilungsmuster der Edelmetalle bezeugen die Natur des abgereicherten Mantels sowie die Gegenwart von höher differenzierten—vermutlich kumulativen—Gesteinen. Die Hinweise aus den geochemischen Untersuchungen führen zu konsistenten Ergebnissen. Die Anreicherung der Seltenen Erden und Edelmetalle ist mit der verarmten Signatur der Hauptelemente nicht vereinbar, daher wird eine sekundäre Elementanreicherung durch Schmelzinfiltration der Ultramafite vorgeschlagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrecht J, Biino GG, Mercolli I, Stille P (1991) Mafic-ultramafic rock associations in the Aar, Gotthard und Tavetsch massifs of the Helvetic domain in Central Swiss Alps: markers of ophiolitic pre-Variscan sutures, reworked by polymetamorphic events? Schweiz Mineral Petrogr Mitt 71: 295–300

    Google Scholar 

  • Arnold A (1970) Die Gesteine der Region Nalps-Curnera im nordöstlichen Gotthardmassiv, ihre Metamorphose und ihre Kalksilikatfels-Einschlüsse (Petrographische Untersuchungen im Bereich der Anlagen der Kraftwerke Vorderrhein). Beitr Geol Karte Schweiz NF 138: 128

    Google Scholar 

  • Balashov YA, Dmitriev L V, Sharaskin AY (1970) Distribution of rare earths and yttrium in bed rocks of the oceanic floor. Geokhimiya 6: 647–660

    Google Scholar 

  • Barnes I, O'Neil JR (1969) The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. Geol Soc Am Bull 80: 1947–1960

    Google Scholar 

  • Biino GG (1993) Thermobarometric calculations in polymetamorphic mafic rocks: a case history from the Gotthard massif (Central Swiss Alps). Terra abstracts 5: 399

    Google Scholar 

  • —,Abrecht J (1993) Mafic and ultramafic associations in the Helvetic basement of the Central Alps: relics of an ancient ocean emplaced in an accretionary prism. Schweiz Mineral Petrogr Mitt (submitted)

  • —,Meisel T (1993) Major, trace, noble and rare earth elements distribution in polymetamorphic ultrarnafics (Aar massif, Central Alps, Switzerland). Schweiz Mineral Petrogr Mitt (submitted)

  • —,Stille P, Abrecht J, Mercolli I (1993) Trace element ans Sr-Nd isotopic studies of Proterozoic MOR and island arc basalts in the Central Alps. Contrib Mineral Petrol (submitted)

  • Bodinier JL (1988) Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps. Tectonophysics 149: 67–88

    Google Scholar 

  • —,Guiraud M, Fabries J, Dostal J, Dupuy C (1987) Petrogenesis of layered pyroxenites from Lherz, Freychinède und Prades ultramafic bodies. Geochim Cosmochim Acta 51: 279–290

    Google Scholar 

  • —,Dupuy C, Dostal J (1988) Geochemistry und petrogenesis of Eastern Pyrenean peridotites. Geochim Cosmochim Acta 52: 2893–2907

    Google Scholar 

  • —,Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31: 597–628

    Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (St. John) Red Sea: petrology and geochemistry. J Geophys Res 91: 599–631

    Google Scholar 

  • —,Michael PJ (1989) Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet Sci Lett 91: 297–311

    Google Scholar 

  • Bossart PJ, Meier M, Oberli F, Steiger RH (1986) Morphology versus U-Pb systematics in zircon: a high-resolution isotopic study of a zircon population from a Variscan dike in the Central Alps. Earth Planet Sci Lett 78: 339–354

    Google Scholar 

  • Brügmann GE, Arndt NT, Hofmann WA, Tobschall HJ (1987) Noble metal abundances in komatiite suites from Alexo, Ontario, and Gorgona Island, Colombia. Geochim Cosmochim Acta 51: 2159–2169

    Google Scholar 

  • Crocket JH, Chyi LL (1972) Abundances of Pd, Ir, Os and Au in an alpine ultramafic pluton. 24th Intl. Geol. Congress, Section 10: 202–209

    Google Scholar 

  • Currie LA (1968) Limits for quantitative detection and qualitative determination: application to radiochemistry. Anal Chem 40: 586–593

    Google Scholar 

  • Dick HJB, Fisher RL (1984) Mineralogic studies of the residues of mantle melting: abyssal and alpine-type peridotites. In:Kornprobst J (ed) Kimberlites. The mantle and crustmantle relashionships. Elsevier, Amsterdam, pp. 295–308

    Google Scholar 

  • Dmitriev LV, Ukhanov AV, Sharaskin AY (1976) Petrochemical types of mantle peridotites. Geochim Int 13: 122–127

    Google Scholar 

  • Edwards SJ (1990) Harzburgites and refractory melts in the Lewis Hills massif, Bay of Islands ophiolite complex: the base-metals and precious-metals story. Can Mineral 28: 537–552

    Google Scholar 

  • Elthon D (1992) Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. J Geophys Res 97: 9015–9025

    Google Scholar 

  • Evensenm N, Hamilton PJ, O'Nions RK (1978) Rare-earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42: 1199–1212

    Google Scholar 

  • Frey FA (1970) Rare earth and potassium abundances in St. Paul rocks. Earth Planet Sci Lett 7: 351–360

    Google Scholar 

  • — (1984) Rare earth element abundances in upper mantle rocks. In:Henderson P (ed) Rare earth element geochemistry: Elsevier, Amsterdam, pp. 153–203

    Google Scholar 

  • —,Suen CJ, Stockman HW (1985) The Ronda high temperature peridotite: geochemistry and petrogenesis. Geochim Cosmochim Acta 49: 2469–2491

    Google Scholar 

  • Frisch W, Vavra G, Winkler M (1993) Evolution of the Penninic basement of the Eastern Alps. In:Von Raumer J, Neubauer F (eds) Pre-Mesozoic basement in the Alps. Springer, Berlin Heidelberg New York Tokyo (in press)

  • Hattori K, Hart SR (1991) Osmium-isotope ratios of platinum-group minerals associated with ultramafie intrusions: Os-isotopic evolution of the oceanic mantle. Earth Planet Sci Lett 107: 499–514

    Google Scholar 

  • Höck V (1993) The Habach formation and the Zentralgneis- a key in understanding the Palaeozoic evolution of the Tauern window (Eastern Alps). In:Von Raumer J, Neubauer F (eds) Pre-Mesozoic basement in the Alps. Springer, Berlin Heidelberg New York Tokyo (in press)

  • Jagoutz E, Palme H. Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wänke H (1979) The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Proc Lunar Planet Sci Conf 10th: 2031–2050

  • Keays RR, Nickel DH, Groves DI, McGoldrick PJ (1982) Iridium and palladium as discriminants of volcanic-exhalative, hydrothermal, and magmatic nickel sulfide mineralizations. Econ Geol 77: 1535–1547

    Google Scholar 

  • Kelemen PB (1990) Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol 31: 51–98

    Google Scholar 

  • —,Joyce DM, Webster JD, Holloway JR (1990) Reaction between ultramafic rock and fractionating basaltic magma I. Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150–1050°C and 5 kb. J Petrol 31: 99–134

    Google Scholar 

  • —,Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358: 635–641

    Google Scholar 

  • Kraiger H (1989) Die Habachformation- ein Produkt ozeanischer und kontinentaler Kruste. Mitt Osterr Geol Ges 81: 47–64

    Google Scholar 

  • Kurat G, Palme H, Spettel B, Baddenhausen H, Hofmeister H, Palme C, Wanke H (1980) Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for a variety of upper mantle processes. Geochim Cosmochim Acta 44: 45–60

    Google Scholar 

  • Liang Y, Elthon D (1990) Geochemistry und petrology of spinel lherzolite xenoliths from Xalapasco de La Joya, San Luis Potosi, Mexico: partial melting and mantle metasomatism. J Geophys Res 95: 15859–15877

    Google Scholar 

  • Maaløe S, Aoki K (1977) The major element composition of the upper mantle estimated from the composition of lherzolite. Contrib Mineral Petrol 63: 161–173

    Google Scholar 

  • McDonough WF, Frey FA (1989) Rare earth elements in upper mantle rocks. Review in Mineralogy. Geochemistry and mineralogy of rare earth elements 21: 99–145

    Google Scholar 

  • Menzies MA, Hawkesworth CJ (1987) Mantle metasomatism. Academic Press, London, 472 pp

    Google Scholar 

  • Michael PJ, Bonatti E (1985) Peridotite composition from the North Atlantic: regional and tectonic variations and implication for partial melting. Earth Planet Sci Lett 73: 91–104

    Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1969) Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24° and 30° north latitude. Contrib Mineral Petrol 23: 117–127

    Google Scholar 

  • Naldrett AJ, Duke JM (1980) Platinum metals in magmatic sulfide ores. Science 208: 1417–1424

    Google Scholar 

  • —,Barnes SJ (1986) The behaviour of platinum group elements during fractionation crystallization and partial melting with special reference to the composition of magmatic sulfide ores. Fortsch Miner 64: 113–133

    Google Scholar 

  • Navon O, Stolper E (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95: 285–307

    Google Scholar 

  • Nicolas A (1989) Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer, Dordrecht, 367 pp

    Google Scholar 

  • —,Dupuy C (1984) Origin of ophiolitic and oceanic lherzolites. Tectonophysics 110: 177–187

    Google Scholar 

  • Oberli F, Büno GG, Meier M (1993) Early polymetamorphic evolution of a Central Swiss Alpine terrain examinated by single-crystal U-Th-Pb dating tecniques. Terra abstracts 5: 392

    Google Scholar 

  • O'Reilly SY, Griffin WL (1988) Mantle metasomatism beneath western Victoria, Australia. J. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52: 433–447

    Google Scholar 

  • Ohnenstetter M (1992) Platinum group element enrichment in the upper mantle peridotites of the Monte Maggiore Ophiolitic Massif (Corsica, France): mineralogical evidence for ore-fluid metasomatism. Min Petrol 46: 85–107

    Google Scholar 

  • Oshin IO, Crocket JH (1982) Noble metals in Thetford Mines ophiolites, Quebec, Canada. Part I. Distribution of gold, iridium, platinum, and palladium in the ultramafic and gabbroic rocks. Econ Geol 77: 1556–1570

    Google Scholar 

  • Ottonello G, Ernst WG, Joron JL (1984) Rare earth and 3d transition element geochemistry of peridotite rocks. I. Peridotites from the Western Alps. J Petrol 25: 343–372

    Google Scholar 

  • Page NJ, Talkington R W (1984) Palladium, platinum, rhodium, ruthenium, and iridium in peridotites and chromitites from ophiolite complexes in Newfoundland. Can Mineral 22: 137–149

    Google Scholar 

  • Pallister JS, Knight RJ (1981) Rare-earth element geochemistry of the Samail ophiolite near Ibra, Oman. J Geophys Res 86: 2673–2697

    Google Scholar 

  • Petrakakis K (1977) Zur Geologie des Stubach-Ultramafitit-Komplexes. Mitt Ges Geol Bergbaustund Österr 24: 47–57

    Google Scholar 

  • — (1978) Der Stubachtal-Ultramafitit-Komplex (Salzburg, Österreich). Tscherm Min Petrol Mitt 25: 1–32

    Google Scholar 

  • Pfeifer HR, Büno GG, Menot RP, Stille P (1993) Ultramafic rocks in the pre-Mesozoic basement of the Central and External Western Alps. In:Von Raumer J, Neubauer F (eds) Pre-Mesozoic basement in the Alps. Springer, Berlin Heidelberg New York Tokyo (in press)

    Google Scholar 

  • Pokrovskii VA, Helgeson HC (1993) Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3-H2O-NaCl. Am J Sci (in press)

  • Potts PJ, Gowing CJB, Govindaraju K (1992) Preparation, homogeneity evaluation and cooperative study of two new chromitite reference samples CHR-Pt + and CHR-Bkg. Geostandards Newsletter 16: 81–108

    Google Scholar 

  • Prinzhofer A, Allègre CJ (1985) Residual peridotite and the mechanisms of partial melting. Earth Planet Sci Lett 74: 251–265

    Google Scholar 

  • von Raumer J, Menot RP, Abrecht J, Büno GG (1993) The pre-Alpine evolution of the External Massifs. In:Von Raumer J, Neubauer F (eds) Pre-Mesozoic basement in the Alps. Springer, Berlin Heidelberg New York Tokyo (in press)

    Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Robert RVD, van Wyk E, Palmer R (1971) Concentration of the noble metals by a fire-assay technique using nickel sulphide as the collector. National Institute for Metallurgy, NIM South Africa, p 14

    Google Scholar 

  • Sergeev SA, Steiger RH (1993) High-precision U-Pb single zircon dating of Variscan and Caledonian magmatic cycles in the Gotthard Massif, Central Swiss Alps. Terra abstracts 5: 394–395

    Google Scholar 

  • Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalts from Hannuoba, Eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta 53: 97–113

    Google Scholar 

  • Stumpfl EF, Rucklidge JC (1982) The platiniferous dunite pipes of the Eastern Bushveld. Econ Geol 77: 1419–1431

    Google Scholar 

  • Sun SS, Mc Donough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In:Saunder AD, Norry NJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ: 313–345

  • Toramaru A, Fujii N (1986) Connectivity of melt phase in a partially molten peridotite. J Geophys Res 91: 9239–9252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büno, G.G., Meisel, T. Geochemistry of polymetamorphic ultramafics (Major, Trace, Noble and Rare Earth Elements): An example from the Helvetic basement, Central Alps, Switzerland. Mineralogy and Petrology 49, 189–212 (1993). https://doi.org/10.1007/BF01164594

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164594

Keywords

Navigation