Skip to main content
Log in

Estimation of the pressure of crystallization and H2O content of MORB and BABB glasses: calibration of an empirical technique

Die Kalibration einer empirischen Technik zur Abschätzung des Kristallisationsdruckes und des H2O-Gehaltes von MORB und BABB Gläsern

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

We present an empirical technique for estimating crystallization pressure and H2O content of MORB and BABB glasses using glass major element compositions alone. This technique is based on models describing 1 atm mineral — basaltic melt equilibria for olivine (ol), plagioclase (pl), and clinopyroxene (cp) which allow calculation of liquidus temperatures for each mineral on the basis of melt composition alone. A necessary requirement for using the proposed technique is cosaturation of glasses with of andpl for estimation of H2O contents, and withol andcp for estimation of crystallization pressures. Mineralogical criteria can be used to assess cosaturation.

The following logic is employed:

Calculated temperatures ofol, pl andcp liquidus must be the same for a glass which represents a quenched melt which crystallized these minerals at 1 atm. The effect ofpl, forcingcp to appear earlier on the liquidus. For higher-pressure crystallization, calculated 1 atm temperature forcp must be lower than that forol due to stronger dependence ofcp crystallization temperature on pressure. Thus the difference between calculated 1 atm liquidus temperatures forol andcp must reflect crystallization pressure. It is well known that H2O can depress crystallization temperature ofpl compared to those ofol andcp. Thus forol-pl saturated H2O-bearing melts, calculated 1 atm anhydrous temperatures forpl must be higher than those forol, and the difference between calculated anhydrous 1 atm liquidus temperatures forpl andol must reflect melt H2O content. p ]As the results of this technique are entirely dependent on the quality of glass major element analyses, we emphasize that application of this method to a single glass analysis can lead to erroneous results. A preferable approach is to obtain a statistically meaningful number of glass analyses for each suite and use averages. We also emphasize the danger of extrapolation of our technique to compositions beyond the MORB — BABB compositional range.

Zusammenfassung

Wir präsentieren eine empirische Methode zur Abschätzung des Kristallisationsdruckes und des H2O-Gehaltes von MORB und BABB Gläsern, wobei auschließlich die Hauptelementzusammensetzung der Gläser benützt wird. Diese Methode beruht auf Modellen, die die Schmelzgleichgewichte zwischen Olivin (ol), Plagioklas (pl) und Klinopyroxen (cp) bei 1 atm beschreiben und die die Berechnung der Liquidus- Temperaturen für jedes dieser Minerale auf Basis der Schmelzzusammensetzung erlauben. Eine notwendige Voraussetzung zur Anwendung dieser Technik für die Abschätzung des H2O-Gehaltes ist die Sättigung der Gläser bezüglich of undpl bzw. für die Abschätzung des Kristallisationsdruckes bezüglichol undcp. Mineralogische Kriterien können zur Abschätzung der Sättigung herangezogen werden.

Die folgende Logik wird angewendet:

Die berechneten Liquidus-Temperaturen vonol, pl undcp müssen gleich sein wie für ein Glas, das abgeschreckte Schmelze repräsentiert aus dem diese Minerale bei 1 atm kristallisiert sind. Der Einfluß des Druckes resultiert hauptsächlich in einer Erhöhung dercp Kristallisations-Temperatur, im Vergleich zu der vonol undpl, wodurchcp gezwungen wird früher am Liquidus zu erscheinen. Für Kristallisation unter höherem Druck muß, als Folge der stärkeren Abhängigkeit dercp Kristallisationstemperatur vom Druck, die für 1 atm berechnete Temperatur voncp daher niedriger sein als die fürol. Die Differenz zwischen den bei 1 atm berechneten Liquidus-Temperaturen fürol undcp müssen daher den Kristallisationsdruck widerspiegeln. Es ist bekannt, daß H2O die Kristallisationstemperatur vonpl im Vergleich zuol undcp herabsetzt. Fürol-cp gesättigte H2O-führende Schmelzen muß daher die bei 1 atm und unter wasserfreien Bedingungen berechnete Temperatur vonpl höher sein als die fürol. Die Differenz zwischen diesen berechneten Temperaturen fürpl undol ergibt daher den H2O-Gehalt der Schmelze. p ]Da die Ergebnisse dieser Methode ausschließlich von der Qualität der Hauptelementanalysen der Gläser abhängen, weisen wir darauf hin, daß die Verwendung einer einzigen Glasanalyse zu falschen Ergebnissen führen kann. Die Verwendung von Mittelwerten, berechnet aus einer statistisch gesicherten Anzahl von Glasanalysen, wird daher bevorzugt. Wir weisen außerdem auf die Gefahr der Extrapolation dieser Technik auf Zusammensetzungen außerhalb des MORB—BABB Bereiches hin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggrey KE, Muenow DW, Batiza R (1988a) Volatile abundances in basaltic glasses from seamounts flanking the East Pacific Rise at 21 N and 12–14 N. Geochim Cosmochim Acta 52: 2115–2119

    Google Scholar 

  • Aggrey KE, Muenow DW, Sinton JM (1988b) Volatile abundances in submarine glasses from the Northern Fiji and Lau back-arc basins. Geochim Cosmochim Acta 52: 2501–2506

    Google Scholar 

  • Ariskin AA, Barmina GS (1990) Equilibria thermometry between plagioclases and basalt and andesite magmas. Geochem Int 27(10): 129–134

    Google Scholar 

  • Ariskin AA, Barmina GS, Frenkel MYa (1987) Simulating low-pressure tholeiite-magma crystallization at a fixed oxygen fugacity. Geochem Int 24(5): 92–100

    Google Scholar 

  • Baker DR, Eggler DH (1987) Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from I atm to 8 kbar: application to the Aleutian volcanic center of Atka. Am Mineral 72: 12–28

    Google Scholar 

  • Bender JF, Hodges FN, Bence AE (1978) Petrogenesis of basalts from the project FAMOUS area: experimental study from 0 to 15 kbars. Earth Planet Sci Lett 41: 277–302

    Google Scholar 

  • Byers CD, Muenow DW Garcia MO (1983) Volatiles in basalts and andesites from the Galapagos spreading center, 85 to 86 W. Geochim Cosmochim Acta 47: 1551–1558

    Google Scholar 

  • Byers CD, Christie DM, Muenow DW, Sinton JM (1984) Volatile contents and ferric-ferros ratios of basalt, ferrobasalt, andesite and rhyodacite glasses from the Galapagos 95.5 W propagating rift. Geochim Cosmochim Acta 48: 2239–2245

    Google Scholar 

  • Byers CD, Garcia MO, Muenow DW (1986) Volatiles in basaltic glasses from the East Pacific Rise at 21 N: implications for MORB sources and submarine lava flow morphology. Earth Planet Sci Lett 79: 9–20

    Google Scholar 

  • Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79: 397–411

    Google Scholar 

  • Danyushevsky LV, Sobolev AV, Kononkova NN (1992) Methods of studying magma inclusions in minerals during investigations on water-bearing primitive mantle melts (Tonga trench boninites). Geochem Int 29: 48–62

    Google Scholar 

  • Danyushevsky LV, Falloon TJ, Sobolev AV, Crawford AJ, Carroll M, Price RC (1993) The H2O content of basalt glasses from Southwest Pacific back-arc basins. Earth Planet Sci Lett 117: 347–362

    Google Scholar 

  • Delaney JR, Muenow DW Graham DG (1978) Abundance and distibution of water, carbon and sulfur in the glassy rims of submarine pillw basalts. Geochim Cosmochim Acta 42: 581–594

    Google Scholar 

  • Duncan RA, Green DH (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Mineral Petrol 96: 326–342

    Google Scholar 

  • Falloon TJ, Green DH (1987) Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kb: implications to the origin of primitive MORB glasses. Mineral Petrol 37: 181–219

    Google Scholar 

  • Falloon TJ, Green DH (1988) Anhydrous partial melting of peridotite from 8 to 35 kb and the petrogenesis of MORB. J Petrol, Special Lithosphere Issue: 379–414

  • Falloon TJ, Green DH, Hatton, C J, Harris KL (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol 29: 1257–1282

    Google Scholar 

  • Fisk MR, Bence AE (1980) Experimental crystallization of chrome spinel in FAMOUS basalt 527-1-1. Earth Planet Sci Lett 48: 111–123

    Google Scholar 

  • Ford CE, Russell DG, Groven JA, Fisk MR (1983) Distribution coefficients of Mg2+, Fe2+, Ca2+ and Mn2+ between olivine and melt. J Petrol 24: 256–65

    Google Scholar 

  • Fram MS, Longhi J (1992) Phase equilibria of dikes associated with Proterozoic anorthosite complexes. Am Mineral 77: 605–616

    Google Scholar 

  • Fujii T, Scarfe CM (1985) Composition of liquids coexisting with spinel lherzolite at 10 kb and the genesis of MORB. Contrib Mineral Petrol 90: 18–28

    Google Scholar 

  • Gaetani GA, Grove TL, Bryan WB (1994) Experimental phase relations of basaltic andesite from hole 839B under hydrous and anhydrous conditions. In:Hawkins JW, Parson L, Allan J, et al (eds) Proc ODP Sci Results 135. College Station, TX (Ocean Drilling Program), pp 557–565

  • Grove TL, Bryan WB (1983) Fractionation of pyroxene-phyric MOR at low pressure: an experimental study. Contrib Mineral Petrol 84: 293–309

    Google Scholar 

  • Grove TL, Juster TC (1989) Experimental investigation of low-Ca pyroxene stability and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic liquids. Contrib Mineral Petrol 103: 287–305

    Google Scholar 

  • Grove TL, Gerlach DC, Sando TW (1982) Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing. Contrib Mineral Petrol 80: 160–182

    Google Scholar 

  • Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt (MORB). In: Mantle flow and melt generation at mid-ocean ridges. AGU Geophysical Monograph 71, pp 281–310

  • Housh TB, Luhr JF (1991) Plagioclase-melt equilibria in hydrous system. Am Mineral 76: 477–492

    Google Scholar 

  • Juster TC, Grove TL, Perfit MR (1989) Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos spreading center, 85° W and 95° W. J Geophys Res 94B: 9251–9274

    Google Scholar 

  • Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of Mid-Ocean Ridge Basalts: constraints on melt generation beneath ocean ridges. In: Mantle flow and melt generation at mid-ocean ridges. AGU Geophysical Monograph 71, pp 183–280

  • Michael PJ, Chase RL (1987) The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation. Contrib Mineral Petrol 96: 245–263

    Google Scholar 

  • Michael PJ, Schilling J-G (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of sea-water-influenced components. Geochim Cosmochim Acta 53: 3131–3143

    Google Scholar 

  • Muenow DW, Norman LKW, Garcia M0, Saunders AD (1980) Volatiles in submarine volcanic rocks from the spreading axis of the East Scotia Sea back-arc basin. Earth Planet Sci Lett 47: 272–278

    Google Scholar 

  • Muenow DW Perfit MR, Aggrey KE (1991) Abundances of volatiles and genetic relationships among submarine basalts from the Woodlark Basin, southwest Pacific. Geochim Cosmochim Acta 55: 2231–2239

    Google Scholar 

  • Nielsen RL, Dungan MA (1983) Low pressure mineral-melt equilibria in natural anhydrous mafic systems. Contrib Mineral Petrol 84: 310–326

    Google Scholar 

  • Niu Y, Batiza R (1993) Chemical variation trends at fast and slow spreading Mid-Ocean Ridges. J Geophys Res 98B: 7887–7902

    Google Scholar 

  • Poreda R (1985) Helium-3 and deuterium in back-arc basalts: Lau Basin and the Mariana Trough. Earth Planet Sci Lett 73: 244–254

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29: 275–89

    Google Scholar 

  • Sinton JM, Fryer P (1987) Mariana Trough lavas from 18°N: implications for the origin of back-arc basalts. J Geophys Res 92: 12782–12802

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113: 143–166

    Google Scholar 

  • Stolper E (1980) A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib Mineral Petrol 74: 13–27

    Google Scholar 

  • Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressure and basalt magma genesis. Am Mineral 68: 859–79

    Google Scholar 

  • Tormey DR, Grove TL, Bryan WB (1987) Experimental petrology of normal MORB near the Kane Fracture Zone - 22°–25°N, mid-Atlantic ridge. Contrib Mineral Petrol 96: 121–139

    Google Scholar 

  • Volpe AM, MacDougall JD, Hawkins JW (1987) Mariana Trough basalts (MTB): trace element and Sr/Nd isotopic evidence for mixing between MORB-like and arc-like melts. Earth Planet Sci Lett 82: 241–254

    Google Scholar 

  • Walker DA, Shibata T, Delong SE (1979) Abyssal tholeiites from the Oceanographer Fracture Zone. 11. Phase equilibria and mixing. Contrib Mineral Petrol 70: 111–125

    Google Scholar 

  • Weaver JS, Langmuir CH (1990) Calculation of phase equilibrium in mineral-melt systems. Comp Geosci 16:1–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danyushevskyl, L.V., Sobolevz, A.V. & Dmitrievz, L.V. Estimation of the pressure of crystallization and H2O content of MORB and BABB glasses: calibration of an empirical technique. Mineralogy and Petrology 57, 185–204 (1996). https://doi.org/10.1007/BF01162358

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162358

Keywords

Navigation