Skip to main content
Log in

Breakdown of the power-law creep in a Class I Al-10 at % Zn alloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The creep behaviour of Al-10 at% Zn at 573 K is divisible into three deformation regions; low stress region, intermediate stress region and high stress region. The creep characteristics of the low stress region and intermediate stress region are consistent with dislocation climb and viscous glide, respectively. In the high stress region, the stress exponent,n increases with stress, the activation energy is higher than those observed in the other two regions, the activation area is slightly decreasing with stress and the internal stress is almost negligible. Present analysis shows that these characteristics are consistent with the thermally-activated glide motion of dislocations as a rate controlling mechanism at high stresses.[/p]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. D. Sherby andP. M. Burke,Prog. Mater. Sci. 13 (1968) 325.

    Google Scholar 

  2. W. R. Cannon andO. D. Sherby,Metall. Trans. 1 (1970) 1030.

    Google Scholar 

  3. F. A. Mohamed andT. G. Langdon,Acta Metall. 22 (1974) 779.

    Google Scholar 

  4. J. Weertman, in “Rate Processes in Plastic Deformation of Materials”, edited by J. C. M. Li and A. K. Mukherjee (ASM, Metal Park, Ohio, 1975) p. 315.

    Google Scholar 

  5. O. D. Sherby andC. M. Young, in “Rate Processes in Plastic Deformation of Materials”, edited by J. C. M. Li and A. K. Mukherjee (ASM, Metal Park, Ohio, 1975) p. 497.

    Google Scholar 

  6. M. F. Ashby andH. J. Frost, in “Constitutive Equations in Plasticity”, edited by A. S. Argon (MIT Press, Cambridge, Massachusetts, 1975) p. 117.

    Google Scholar 

  7. W. D. Nix andB. Ilschner, in “Proceedings of the Fifth International Conference on the Strength of Metals and Alloys”, edited by P. Haasen, E. Gerold and G. Kostorz (Pergamon Press, Oxford, 1979) p. 1503.

    Google Scholar 

  8. A. Arieli andA. K. Mukherjee, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, 1981) p. 97.

    Google Scholar 

  9. F. A. Mohamed,Mater. Sci. Eng. 38 (1979) 73.

    Google Scholar 

  10. K. L. Murty,Scripta Metall. 7 (1973) 899.

    Google Scholar 

  11. P. Yavari andT. G. Langdon,Acta Metall. 30 (1982) 2181.

    Google Scholar 

  12. M. S. Soliman andF. A. Mohamed,Metall. Trans. A15 (1984) 1893.

    Google Scholar 

  13. K. Kuchařová andJ. Čadek,Phys. Status Solidi (a) 6 (1971) 33.

    Google Scholar 

  14. H. J. Frost andM. F. Ashby, “Deformation Mechanism Maps” (Pergamon Press, Oxford, 1982) p. 8.

    Google Scholar 

  15. S. Takeuchi andA. S. Argon,J. Mater. Sci. 11 (1976) 1542.

    Google Scholar 

  16. V. I. Vladimirov, A. A. Kusov andN. N. Gorobey,Phys. Met. Metallogr. 48 (1979) 154.

    Google Scholar 

  17. V. I. Vladimirov andN. N. Gorobey,ibid.|53 (1982) 159.

    Google Scholar 

  18. J. Friedel, “Dislocations” (Pergamon Press, Oxford, 1964) p. 315.

    Google Scholar 

  19. H. W. King,J. Mater. Sci. 1 (1966) 79.

    Google Scholar 

  20. B. A. Chin, PhD thesis, Stanford University, California (1976).

  21. M. S. Soliman, PhD thesis, University of California, Irvine (1984).

  22. B. Burton,Phil. Mag. A 46 (1982) 607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliman, M.S. Breakdown of the power-law creep in a Class I Al-10 at % Zn alloy. J Mater Sci 22, 3529–3532 (1987). https://doi.org/10.1007/BF01161453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161453

Keywords

Navigation