Skip to main content
Log in

Carnosol. Crystal structure, absolute configuration, and spectroscopic properties of a diterpene

  • Published:
Journal of Crystallographic and Spectroscopic Research Aims and scope Submit manuscript

Abstract

The structure and absolute configuration of naturally occurring Carnosol have been investigated by X-ray analyses. Crystal data are: orthorhombic P21212;a=15.762(1),b=13.755(1),c=7.7747(7) Å,Z=4,V=1688.2 Å3, andR=0.031 (2569 reflections). The absolute configuration is established at a significance level better than 0.995 according to HamiltonsR-factor test and is in accordance with that predicted experimentally by chemically means. Correlation of the solid-state IR pattern of the regions sensitive to hydrogen bonding (CO and OH stretching bands) with the X-ray crystal structure is excellent and shows, that even weak inter- and intramolecular hydrogen bonds may be unambiguously identified by IR spectroscopy. The variable-temperature nuclear magnetic resonance studies (NMR) show that the twinning of the signals from the isopropyl methyl protons cannot be due to hindered rotation but can be ascribed magnetic nonequivalence induced by the chiral centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich Library of Infrared Spectra (1985) Spectrum No. 13501–1.

  • Applications of Dynamic NMR Spectroscopy to Organic Chemistry (1985), Michinori Oki, ed. (VCH Publisher, Fla).

    Google Scholar 

  • Asao, M., Iwamura, H., Akamatsu, M., and Fujita, T. (1987)J. Med. Chem. 1873–79.

  • Bellamy, L. J. (1975)The Infra-red Spectra of Complex Molecules (Methuen and Co., London).

    Google Scholar 

  • Bellamy, L. J. (1968)Advances in Infrared Group Frequencies (Methuen and Co., London).

    Google Scholar 

  • Blessing, R. H. (1987)Cryst. Rev. 1, 3–58.

    Google Scholar 

  • Brieskorn, C. H., and Fuchs, A. (1962)Chem. Ber. 95, 3034–41.

    Google Scholar 

  • Brieskom, C. H., Fuchs, A., Bredenberg, J. B., McChesney, J. D., and Wenkert, E. (1964)J. ORG. CHEM. 29, 2293–98.

    Google Scholar 

  • Cañigueral, S., Iglesias, J., Sanchez-Ferrando, F., and Virgili, A. (1988)Phytochem.27, 221–24.

    Google Scholar 

  • Cromer, D. T., and Mann, J. B. (1968)Acta Cryst. A 24, 321–4.

    Google Scholar 

  • Cromer, D. T., and Liberman, D. J. (1970)J. Chem. Phys. 53, 1891–98.

    Google Scholar 

  • Encarnacion, R. D., Keer, S. G., Nielsen, P. H., and Christophersen, C. (1990)J. Ethnopharmacol. Submitted for publication.

  • Fraga, B. M., Gonzalez, A. G., Herrera, J. R., Luis, J. G., Perales, A., and Ravelo, A. G. (1985)Phytochem. 24, 1853–54.

    Google Scholar 

  • Fraga, B. M., Gonzalez, A. G., Herrera, J. R., Luis, J. G., and Ravelo, A. G. (1986)Phytochem. 25, 269–71.

    Google Scholar 

  • Inatani, R., Nakatani, N., Fuwa, H., and Seto, H. (1982)Agric. Biol. Chem. 46, 1661–6.

    Google Scholar 

  • Ingraham, L. L., Corse, J., Bailey, G. F., and Stitt, F. (1952)J. Am. Chem. Soc. 74, 2297–99.

    Google Scholar 

  • International Tables for X-Ray Crystallography (1974)Vol. IV (Kynoch Press, Birmingham), pp. 287–93.

  • Jennings, W. B. (1975)Chem. Rev. 75, 307–22.

    Google Scholar 

  • Kelecom, A. (1983)Tetrahedron 39, 3603–07.

    Google Scholar 

  • Kelecom, A., and Medeiros, W. L. B. (1987)Quim. Nova 10, 153.

    Google Scholar 

  • Kelecom, A., Santos, T. C. D., and Medeiros, W. L. B. (1986)Ann. Acad. Brasil. Cienc. 58, 53–59.

    Google Scholar 

  • Kuchita, T., and Kubo, I. (1969)Nature (London) 223, 97–99.

    Google Scholar 

  • Kuhn, L. P., and Bowman, R. E. (1961)Spectrochim. Acta 17, 650–60.

    Google Scholar 

  • Kumazawa, T., Nomura, T., and Kurihara, K. (1988)Biochemistry 27, 1239–44.

    Google Scholar 

  • Lee, C.-H. (1987)Adv. Carbohydr. Chem. Biochem. 45, 199–349.

    Google Scholar 

  • Linde, H. (1964)Helv. Chim. Acta 47, 1234–1239.

    Google Scholar 

  • Meyer, W. L., Manning, R. A., Schroeder, R. S., and Shew, D. C. (1976)J. Org. Chem. 41, 1005–15.

    Google Scholar 

  • Nyquist, R. A. (1963)Spectrochim. Acta 19, 1655–64.

    Google Scholar 

  • Oki, M. (1985) Applications of Dynamic NMR Spectroscopy to Organic Chemistry. (VCH Verlagsgesellschaft, Weinheim), pp. 199–204.

    Google Scholar 

  • Pinto, A. C., Patitucci, M. L., Zocher, D. H. T., and Kelecom, A. (1985)Phytochem. 24, 2345–47.

    Google Scholar 

  • Rogers, D. (1981)Acta Cryst. A 37, 734–41.

    Google Scholar 

  • Seguin, J.-P., Guillaume-Vilport, F., Uzan, R., and Doucet, J.-P. (1986)J. Chem. Soc. Perkin 2, 773–9.

    Google Scholar 

  • Sheldrick, G. M. (1985) inCrystallographic Computing Vol. 3 (Oxford University Press).

  • Stewart, R. F., Davidson, E. R., and Simpson, W. T. (1965)J. Chem. Phys. 42, 3175–87.

    Google Scholar 

  • Structure Determination Package (1981) (Enraf Nonius Delft, Holland).

  • Wu, J. W., Lee, M.-H., Ho, C.-T., and Chang, S. S. (1982)JAOCS 59, 339–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gajhede, M., Anthoni, U., Per Nielsen, H. et al. Carnosol. Crystal structure, absolute configuration, and spectroscopic properties of a diterpene. Journal of Crystallographic and Spectroscopic Research 20, 165–171 (1990). https://doi.org/10.1007/BF01160970

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160970

Keywords

Navigation