Skip to main content
Log in

A generic analysis for high-temperature power-law deformation: the case of linear In (strain rate)-In(stress) relationship

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Isostructural low-stress high-temperature deformation of different classes of materials is often represented by a power law that connects the strain rate to the flow stress through a stress exponent. The temperature dependence of the rate of deformation is assumed to be exponential. In Mukherjeeet al's popular approach the temperature dependence of the stress exponent is ignored by assuming a mean value for the stress exponent for the temperature range of interest and the stress is normalized with respect to the elastic constant. In the approach adopted by the engineers the stress is normalized with respect to a reference stress and it is possible to take into account the temperature dependence of the stress exponent while evaluating the activation energy for the rate-controlling process. Experimental data pertaining to 27 systems drawn from metals and alloys, superalloys, ceramics, glass ceramics, metal-matrix composites and an intermetallic, have been analysed using the latter approach to determine an activation energy for the rate-controlling process. It is demonstrated that this is an accurate description of high-temperature power-law deformation and that it involves less numbers of empirical constants than the former approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Mukherjee, J. E. Bird andJ. R. Dorn,Trans. Am. Soc. Metals 62 (1969) 155.

    Google Scholar 

  2. R. L. Stocker andM. F. Ashby,Scripta Metall. 7 (1973) 115.

    Google Scholar 

  3. A. M. Brown andM. F. Ashby,ibid. 14 (1980) 1297.

    Google Scholar 

  4. B. Derby andM. F. Ashby,ibid. 18 (1984) 1079.

    Google Scholar 

  5. F. A. Mohammed, S. Shei andT. G. Langdon,Acta Metall. 23 (1975) 1443.

    Google Scholar 

  6. B. Ilschner, “Hochtemperatur-Plastizitaet” (Springer, Berlin, 1973) pp. 95–6.

    Google Scholar 

  7. P. M. Hazzledine andY. Motohashi, in “Superplasticity”, edited by B. Baudelet and M. Suery (Editions Du Centre National De La Recherche Scientifique, Paris, 1985) pp. 1.1–1.15.

    Google Scholar 

  8. B. P. Kashyap andA. K. Mukherjee,ibid.“ pp. 4.1–4.31.

    Google Scholar 

  9. S. Glasstone, K. J. Laidler andH. Eyring, “The Theory of Rate Processes” (McGraw-Hill, New York, 1941) pp. 477–551.

    Google Scholar 

  10. G. H. Vineyard,J. Phys. Chem. Solids. 3 (1957) 121.

    Google Scholar 

  11. J. Burke, “The Kinetics of Phase Transformations in Metals” (Pergamon, London, 1965) pp. 1–60.

    Google Scholar 

  12. J. W. Christian andB. C. Masters,Proc. R. Soc. 281 (1964) 223.

    Google Scholar 

  13. K. A. Padmanabhan,Scripta Metall. 7 (1973) 136.

    Google Scholar 

  14. G. S. Sohal andR. Pearce,J. Mater. Sci. 22 (1987) 2327.

    Google Scholar 

  15. R. W. Cahn andP. Haasen, “Physical Metallurgy” (Elsevier Science, Amsterdam, 1983) pp. 1330, 1342–1403.

    Google Scholar 

  16. K. A. Padmanabhan andJ. Schlipf,Mater. Sci. Technol, in press.

  17. Z. S. Basinski,Acta Metall. 5 (1957) 684.

    Google Scholar 

  18. K. A. Padmanabhan andG. J. Davies, “Superplasticity” (Springer Verlag, Berlin, 1980).

    Google Scholar 

  19. S. S. Bhattacharya andK. A. Padmanabhan, in “Superplasticity in Advanced Materials”, edited by S. Hori, M. Tokizane and N. Furushiro (Japan Society for Research on Superplasticity, Osaka, 1991) pp. 33–9.

    Google Scholar 

  20. J. G. Wang andR. Raj,J. Am. Ceram. Soc. 67 (1984) 399.

    Google Scholar 

  21. F. Wakai andT. Nagano,J. Mater. Sci. 26 (1991) 241.

    Google Scholar 

  22. T. G. Nieh andJ. Wadsworth,Acta Metall. 38 (1990) 1121.

    Google Scholar 

  23. F. Wakai andH. Kato,Adv. Ceram. Mater. 3 (1988) 71.

    Google Scholar 

  24. F. Wakai, Y. Kodama, S. Sakaguchi, N. Murayana, H. Kato andT. Nagano, in “International Meeting on Advanced Materials”, edited by M. Kobayashi and F. Wakai (Metals Society, Pittsburgh, PA (1989) p. 259.

    Google Scholar 

  25. T. G. Nieh, C. M. McNally andJ. Wadsworth,Scripta Metall. 23 (1989) 457.

    Google Scholar 

  26. C. Carry andA. Mocellin,Commun Am. Ceram. Soc. 69 (1986) 215.

    Google Scholar 

  27. P. C. Panda, P. E. D. Morgan andR. Raj,J. Am. Ceram. Soc. 68 (1985) 522.

    Google Scholar 

  28. J. K. Gregory, I. C. Gibeling andW. D. Nix,Metall. Trans. 16A (1985) 777.

    Google Scholar 

  29. S. Kikuchi, S. Ando, S. Futani, T. Kitamura andM. Koiwa,J. Mater. Sci. 25 (1990) 4712.

    Google Scholar 

  30. R. Raj andT. G. Langdon,Acta Metall. 37 (1989) 841.

    Google Scholar 

  31. S. Vagarali andT. G. Langdon,ibid. 29 (1981) 1969.

    Google Scholar 

  32. S. L. Robinson andO. D. Sherby,ibid. 17 (1969) 109.

    Google Scholar 

  33. K. Malicka, J. Cadek andP. Rys,ibid. 18 (1970) 732.

    Google Scholar 

  34. T. Sakuma andH. Hondo, in “Superplasticity in Advanced Materials”, edited by S. Hori, M. Tokizane and N. Furushiro (Japan Society for Research on Superplasticity, Osaka, 1991) p. 349.

    Google Scholar 

  35. T. G. Nieh, C. M. McNally andJ. Wadsworth,J. Mater. Sci. 24 (1989) 988.

    Google Scholar 

  36. B. P. Kashyap andK. Tangri,Scripta Metall. 19 (1985) 1419.

    Google Scholar 

  37. E. Pink, R. Kutschej andH. P. Stuewe,ibid. 15 (1981) 185.

    Google Scholar 

  38. M. F. Ashby andR. A. Verrall,Acta Metall. 21 (1973) 149.

    Google Scholar 

  39. B. Walser andO. D. Sherby,Scripta Metall. 16 (1982) 213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S.S., Satishnarayana, G.V. & Padmanabhan, K.A. A generic analysis for high-temperature power-law deformation: the case of linear In (strain rate)-In(stress) relationship. J Mater Sci 30, 5850–5866 (1995). https://doi.org/10.1007/BF01151498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01151498

Keywords

Navigation