Skip to main content
Log in

The fracture characterization of highly irradiated Type 316 stainless steel

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fracture characteristics of 20% cold worked Type 316 stainless steel irradiated at 377–400°C to a fluence of 11 × 1022n/cm2 (E > 0.1 MeV) were evaluated based on SEM fractography andJ-integral fracture toughness data. Compact tension specimens were tested at temperatures ranging from 232 to 649°C. A significant reduction in fracture toughness after irradiation was observed, which correlated well with the fracture morphology of the material. It was found that irradiation induces a shift in the transgranular-intergranular fracture transition temperature to a lower temperature. Irradiated specimens exhibited transgranular channel fracture from 232 to 538°C and intergranular fracture at 649°C, while unirradiated specimens failed in a transgranular ductile fracture mode up to 549°C. SEM fractographs revealed plate-like, faceted fracture surfaces of irradiated specimens. The faceted fracture appearance is associated with flow localization and dislocation channeling, phenomena that undoubtedly contribute to the decrease in fracture toughness. The possibility that ordered γ′-phase particles are partially responsible for the reduced toughness as well as for irradiation hardening is discussed.

Résumé

En utilisant la fractographie SEM et des données de ténacité à la rupture basées sur l'intégrale J, on a évalue les caractéristiques à la rupture d'un acier inoxydable type 316 écroui de 20% et irradié à 377–400°C sous un flux intégré de 11.1022 n/cm2 (c > 0.1 MeV).

Des éprouvettes de traction compactes ont été soumises à essai à des températures comprises entre 232 et 649°C. On a observé une réduction significative de la ténacité à la rupture due à l'irradiation, ceci étant confirmé par la morphologie de la rupture. L'irradiation provoque un glissement de la température de transition de rupture intergranulaire-transgranulaire vers une température plus basse. Des échantillons irradiés ont fait état d'une rupture transgranulaire entre 232 et 530°C et d'une rupture intergranulaire à 649°C.

Par contre, des échantillons non irradiés se sont rompus de manière transgranulaire jusqu'à 649°C. Les microfractographies révèlent, sur les éprouvettes irradiées, des surfaces de rupture à facettes, qui sont associées à une localisation de l'écoulement plastique et à une concentration des dislocations, phénomène qui, sans nul doute, contribue à réduire la ténacité à la rupture. On discute de la possibilité d'une responsabilité partielle de particules de phase y' dans la réduction de la ténacité et dans le durcissement dus à l'irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.T. Hahn and A.R. Rosenfield,Metallurgical Transactions A 9A (1975) 653–668.

    Google Scholar 

  2. W.G. Wolfer and R.H. Jones,Journal of Nuclear Materials 104 (1982) 1305–1314.

    Google Scholar 

  3. F.H. Huang and R.L. Fish,Effects of Radiation on Materials, ASTM STP 782, Philadelphia (1982) 701–719.

  4. D.R. Muzyka, inThe Superalloys, ed. C.T. Sims and W.C. Hagel, John Wiley and Sons, New York (1972) 113–143.

    Google Scholar 

  5. I.G. Greenfield and H.G.F. Wilsdorf,Journal of Applied Physics 32 (1961) 827–839.

    Google Scholar 

  6. R.P. Tucker, M.S. Wechsler and S.M. Ohr,Journal of Applied Physics 40 (1969) 400–408.

    Google Scholar 

  7. F.A. Smidt, Jr. and B. Mastel,Philosophical Magazine 20 (1969) 651–656.

    Google Scholar 

  8. F.H. Huang and G.L. Wire, inProceedings of International Conference on Dimensional Stability and Mechanical Behavior of Irradiated Metals and Alloys, British Nuclear Energy Society (London) (1983) 135–138.

    Google Scholar 

  9. F.H. Huang and G.L. Wire,Journal of Engineering Materials and Technology 101 (1978) 403–406.

    Google Scholar 

  10. P.C. Paris, H. Tada, A. Zahoor and H. Ernst, inElastic-Plastic Fracture, ASTM STP 668, Philadelphia (1979) 5–36.

  11. J. Dufresne, B. Henry and H. Larsson, inEffects of Radiation on Structural Materials, ASTM STP 683, Philadelphia (1979) 511–528.

  12. E.A. Little, inProceedings of International Conference on Dimensional Stability and Mechanical Behavior of Irradiated Metals and Alloys, British Nuclear Energy Society (London) (1983).

    Google Scholar 

  13. W.J.S. Yang, H.R. Brager and F.A. Garner, inProceedings of A Symposium on Phase Stability During Irradiation, The Metallurgical Society of AIMS (1980) 257–269.

  14. R.L. Fish, J.L. Straalsund, C.W. Hunter and J.J. Holmes, inEffects of Radiation on Substructural and Mechanical Properties, ASTM STP 529, Philadelphia (1973) 149–164.

  15. G.T. Hahn and A.R. Rosenfield, inApplications Related Phenomena in Titanium,, ASTM STP 432, Philadelphia (1967) 5–32.

  16. B. Weiss and R. Stickler,Metallurgical Transactions 3 (1972) 851–866.

    Google Scholar 

  17. J.R. Rice and M.A. Johnson, inInelastic Behavior of Solids, ed. M.F. Kanninen et al., McGraw-Hill, New York (1970) 641–670.

    Google Scholar 

  18. G. Green and J.F. Knott, ASME Conference on Micromechanical Modeling of Flow and Fracture, Troy, New York, Paper No. 75-Mat-10 (1975).

  19. E. Smith, T.S. Cook, and C.A. Rau, inFracture 1, ICF4, Waterloo, Canada (1977) 215–226.

  20. C.A. Berg, inInelastic Behavior of Solids, ed. M.F. Kanninen et al., McGraw-Hill, New York (1970) 171–210.

    Google Scholar 

  21. W.J. Mills,Metallurgical Transactions 11A (1980) 1039–1047.

    Google Scholar 

  22. A.J.E. Foremon and J.V. Sharp,Philosophical Magazine 19 (1969) 931–937.

    Google Scholar 

  23. H.R. Brager and F.A. Garner,Journal of Nuclear Materials 73 (1978) 9–19.

    Google Scholar 

  24. G.D. Johnson, F.A. Garner, H.R. Brager and R.L. Fish, inEffects of Radiation on Materials, ASTM STP 725, Philadelphia (1981) 393–412.

  25. W.D. Nix, D.K. Matlock, and R.J. Dimelfi,Acta Metallurgica 25 (1977) 495–503.

    Google Scholar 

  26. J.A. Williams,Philosophical Magazine 20 (1969) 635–639.

    Google Scholar 

  27. C.Y. Li, F.V. Ellis and F.H. Huang, inAlloy and Microstructural Design, ed. J.K. Tien and G.S. Ansell, Academic Press, New York, (1976) 403–424.

    Google Scholar 

  28. E.E. Bloom and J.R. Weir, Jr.,Nuclear Technology 16 (1972) 45–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F.H. The fracture characterization of highly irradiated Type 316 stainless steel. Int J Fract 25, 181–193 (1984). https://doi.org/10.1007/BF01140836

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01140836

Keywords

Navigation