Skip to main content
Log in

Mechanisms for rate effects on interlaminar fracture toughness of carbon/epoxy and carbon/PEEK composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate strain-rate dependent energy absorption mechanisms during interlaminar fracture of thermosetting (epoxy) and thermoplastic (PEEK) uni directional carbon fibre (CF) composites. A simple model addressing the translation of matrix toughness to mode I and mode II interlaminar toughness of the composite is presented, in conjunction with a fractographic examination of the fracture surfaces and the fracture process. The observed rate dependency of composite fracture toughness is attributed to the rate dependent toughness of the viscoelastic matrix and the size of the process zone around the crack tip. Other important factors identified are the roughness of the fracture surface and fibre bridging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Wilkins, “The Engineering Significance of Defects in Composite Structures”, Conference Proceedings no. 355, Characterization, Analysis and Significance of Defects in Composite Materials organized by AGARD, 10–15. April 1983, London, UK.

  2. D. L. Hunston,Comp. Tech. Rev. 4 (1986) 176.

    Google Scholar 

  3. A. J. Russell andK. N. Street, “Moisture and Temperature Effects on the Mixed Mode Delamination Fracture of Unidirectional Graphite/Epoxy”, Delamination and Debonding of Materials, ASTM STP 876 (American Society for Testing and Materials, Philadelphia, Pennsylvania, USA, 1985) p. 349.

    Google Scholar 

  4. W. S. Johnson andP. D. Mangalgirl “Investigation of Fiber Bridging in Double Cantilever Beam Specimens”, NASA TM 87716, April 1986.

  5. W. L. Bradley andR. N. Cohen, “Matrix Deformation and Fracture in Graphite Reinforced Epoxies”, Delamination and Debonding of Materials, ASTM STP 876 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1985) (American Society for Testing and Materials, Philadelphia, Pennsylvania) p. 389.

    Google Scholar 

  6. H. H. Kausch, “Polymer Fracture” (Springer Verlag, New York, 1978).

    Google Scholar 

  7. A. J. Kinloch andR. J. Young, “Fracture Behavior of Polymers” (Elsevier Applied Science, London, 1983).

    Google Scholar 

  8. J. G. Williams, “Fracture Mechanics of Polymers” (Ellis, Horwood Chichester, 1984).

    Google Scholar 

  9. K. Friedrich, “Crazing in Shear Bands in SemiCrystalline Polymers”, in “Crazing in Polymers”, edited by H. H. Kausch (Springer Verlag, New York, 1983).

    Google Scholar 

  10. A. J. Smiley, M.S. Thesis, CCM-Report No. CCM-86-01, University of Delaware (1986).

  11. A. J. Smiley andR. B. Pipes,J. Comp. Muter. 21 (1987) 670.

    Google Scholar 

  12. Idem, Comp. Sci. Tech. 29 (1987) 1.

    Google Scholar 

  13. L. A. Carlsson andR. B. Pipes, “Experimental Characterization of Advanced Composite Materials” (Prentice-Hall, New Jersey, 1987).

    Google Scholar 

  14. J. R. Gillespie Jr, L. A. Carlsson andA. J. Smiley,Comp. Sci. Tech. 28 (1987) 1.

    Google Scholar 

  15. L. A. Carlsson, J. W. Gillespie andB. R. Trethewey,J. Reinf. Plast. Comp. 5 (1986) 170.

    Google Scholar 

  16. R. A. Crick, D. C. Leach, P. J. Meakin andD. R. Moors,J. Mater. Sci. 22 (1987) 2094.

    Google Scholar 

  17. W. L. Bradley andW. M. Jordan, “The Relationship between Resin Ductility and Composite Delamination Fracture Toughness”, in Proceedings of International Sym posium on Composite Materials and Structures, edited by T. T. Loo and C. T. Sun (Technomic, Lancaster, USA, 1986) p. 445.

    Google Scholar 

  18. R. W. Lang, M. Heym, H. Tesch andH. Stutz, “Influence of Constituent Properties on Interlaminar Crack Growth in Composites”, in “High Tech — the Way into the Nineties”, edited by K. Brunsch, H. D. Golden and C. M. Herkert (Elsevier, Amsterdam, 1986) p. 261.

    Google Scholar 

  19. K. Friedrich, R. Walter, H. Voss andJ. Karger-Kocsis,Composites 17 (1986) 205.

    Google Scholar 

  20. J. Karger-Kocsis andK. Friedrich,Plastics Rubber Proc. Appl. 8 No. 2 (1987) 91–104.

    Google Scholar 

  21. A. J. Kinloch, S. J. Shaw, D. A. Tod andD. L. Hunston,Polymer 24 (1983) 1341.

    Google Scholar 

  22. Idem, ibid. 24 (1983) 1355.

    Google Scholar 

  23. D. Broek, “Elementary Engineering Fracture Mechanics,” 3rd Edn (Martinus Nijhoff, 1984).

  24. L. Berglund, PhD thesis no. 54, Linkoping University, Sweden (1985).

  25. E. M. Wu, “Strength and Fracture of Composites, Composite Materials”, Vol. 5 “Fracture and Fatigue”, edited by L. J. Broutman (Academic, New York, 1974) p. 191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, K., Walter, R., Carlsson, L.A. et al. Mechanisms for rate effects on interlaminar fracture toughness of carbon/epoxy and carbon/PEEK composites. J Mater Sci 24, 3387–3398 (1989). https://doi.org/10.1007/BF01139070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01139070

Keywords

Navigation