Skip to main content
Log in

Micropore characterization using the Dubinin-Astakhov equation to analyze high pressure CO2 (273 K) adsorption data

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The characterization of the pore structure of microporous materials is of interest because of the usefulness of these materials in many applications. Of these, the characterization of carbon adsorbents is particularly problematic because of the presence of small pores with size on the order of small molecules (micropores) along with a wide distribution of pore sizes, and their non-crystalline structure. In this paper, we present results obtained using the Dubinin-Astakhov equation to analyze data from high pressure CO2 adsorption at 273 K to characterize two sets of microporous carbons. Our results support the conclusions of previous workers that the Dubinin-Astakhov (DA) equation is able to linearize adsorption data that gives rise to curved Dubinin-Radushkevich plots. However, when applied over different ranges of relative pressure on the adsorption isotherm, the Dubinin-Astakhov plots result in different values of micropore volume and characteristic adsorption potential. Furthermore, DA analysis of CO2 (273 K) adsorption data over a wide range of pressures (10−3–22000 Tort), gives results different from DA analysis of CO2 (273 K) isotherms measured at low pressures only (10−3–830 Tort). It would appear desirable to apply the DA equation to data that reflects the entire range of micropore filling on the adsorption isotherm, as opposed to data over a limited relative pressure range. For CO2 adsorption at 273 K, this would necessitate adsorption studies at high pressures, to about 28 atm. Micropore volumes obtained in this manner, agreed with the total pore volumes determined by nitrogen (77 K) adsorption for all the activated carbons studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemienewska, Pure & Appl. Chem.57, 603 (1985).

    Google Scholar 

  2. H. Juntgen, Carbon15, 2731 (1977).

    Google Scholar 

  3. R.V. Carrubba, J.E. Urbanic, N.J. Wagner, and R.H. Zanitsch, AIChE Symposium Series (Adsorption and Ion Exchange)80(233), 76.

  4. R.C. Bansal, J.P. Donnet, and F. Stoeckli, inActive Carbon (Marcel Dekker, New York, 1988).

    Google Scholar 

  5. S.J. Gregg and K.S.W. Sing, inAdsorption, Surface Area, and Porosity (Academic Press, London, 1982).

    Google Scholar 

  6. B.C. Lippens, B.G. Linsen, and J.H. de Boer, J. Catalysis3, 32 (1964).

    Google Scholar 

  7. K.S.W. Sing, inSurface Area Determination, Procedings of an International Symposium, 1969, edited by D.H. Everett and R.H. Ottewill (Butterworths, London, 1970), p. 25.

    Google Scholar 

  8. M.M. Dubinin, inProgress in Surface and Membrane Science, edited by D.A. Cadenhead, J.F. Danielli, and M.D. Rosenberg (Academic Press, New York, 1975), Vol. 9.

    Google Scholar 

  9. R. Ghosal, Y.W. Kim, D.W. Hua, J.V. D'Souza, W. Earl, and D.M. Smith, (manuscript in preparation).

  10. M. Polanyi, Trans. Faraday Soc.28, 316 (1932).

    Google Scholar 

  11. M.M. Dubinin, E.D. Zaverina, and L.V. Radushkevich, Zh. Fiz Khimii21, 1351 (1947).

    Google Scholar 

  12. B. McEnaney, Carbon25, 69 (1987).

    Google Scholar 

  13. B. McEnaney, Carbon26, 267 (1988).

    Google Scholar 

  14. H. Marsh, Carbon25, 49 (1987).

    Google Scholar 

  15. I.M.K. Ismail, Carbon29, 119 (1991).

    Google Scholar 

  16. H. Marsh and B. Rand, J. Coll. Interface Sci.33, 101 (1970).

    Google Scholar 

  17. B. Rand, J. Coll. Interface Sci.56, 337 (1976).

    Google Scholar 

  18. E.M. Freeman, T. Siemienewska, H. Marsh, and B. Rand, Carbon8, 7 (1970).

    Google Scholar 

  19. F. Carrasco-Marin, M.V. Lopez-Ramon, and C. Moreno-Castilla, Langmuir9, 2758 (1993).

    Google Scholar 

  20. F. Rodriguez-Reinoso and A. Linares-Solano, inChemistry & Physics of Carbon, edited by P.A. Thrower (Marcel Dekker, 1989), Vol. 21.

  21. J. Garrido, A. Linares-Solano, J.M. Martin-Martinez, M. Molina-Sabio, F. Rodriguez-Reinoso, and R. Torregrosa, Langmuir3, 76 (1987).

    Google Scholar 

  22. H. Marsh and W.T.K. Wynne-Jones, Carbon1, 269 (1964).

    Google Scholar 

  23. T.G. Lamond and H. Marsh, Carbon1, 281 (1964).

    Google Scholar 

  24. P. Gonzalez-Vilchez, A. Linares-Solano, J.D. Lopez-Gonzalez, and F. Rodriguez-Reinoso, Carbon17, 441 (1979).

    Google Scholar 

  25. J.D. Lopez-Gonzalez, F. Martinez-Vilchez, and F. Rodriguez-Reinoso, Carbon18, 413 (1980).

    Google Scholar 

  26. E. Maglara, A. Pullen, D. Sullivan, and W.C. Conner, Langmuir, (in press).

  27. R. Ghosal, MS Thesis, University of New Mexico (1994).

  28. C.G.V. Burgess and D.H. Everett, J. Coll. Interface Sci.33, 611 (1970).

    Google Scholar 

  29. M. Kobayashi, E. Ishikawa, and Y. Toda, Carbon29, 677 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosal, R., Smith, D.M. Micropore characterization using the Dubinin-Astakhov equation to analyze high pressure CO2 (273 K) adsorption data. J Porous Mater 3, 247–255 (1996). https://doi.org/10.1007/BF01137914

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01137914

Keywords

Navigation