Skip to main content
Log in

A wire trap for neutral atoms

  • Cold Atoms, Atom Traps
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present new ways of trapping a neutral atom with static electric and magnetic fields. We discuss the interaction of a neutral atom with the magnetic field of a current carrying wire and the electric field of a charged wire. Atoms can be trapped by the 1/r magnetic field of a current-carrying wire in a two-dimensional trap. The atoms move in Kepler-like orbits around the wire and angular momentum prevents them from being absorbed at the wire. Trapping was demonstrated in an experiment by guiding atoms along a 1 m long current-carrying wire. Stable traps using the interaction of a polarizable atom with the electric field of a charged wire alone are not possible because of the 1/r 2 form of the interaction potential. Nevertheless, we show that one can build a microscopic trap with a combination of a magnetic field generated by a current in a straight wire and the static electric field generated by a concentric charged ring which provides the longitudinal confinement. In all of these traps, the neutral atoms are trapped in a region of maximal field, in theirhigh-field seeking state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A good overview is given in H. Demelt: Rev. Mod. Phys.62, 521 (1990). H. Walther:Laser Manipulation of Atoms and Ions, ed. by E. Arimondo, W.D. Phillips, F. Strumia (North-Holland, Amsterdam 1992) p. 569 R. Blümel, J.M. Chen, E. Peik, W. Quint, W. Schleich, Y.R. Shen, H. Walther: Nature (London)334, 309 (1988)

    Google Scholar 

  2. E. Arimondo, W.D. Phillips, F. Strumia (eds.):Laser Manipulation of Atoms and Ions (North-Holland, Amsterdam 1992) Special issue onLaser Cooling and Trapping of Atoms: J. Opt. Soc. Am. B.6 (Nov. 1989)

    Google Scholar 

  3. A good overview is given in W. Paul: Rev. Mod. Phys.62, 531 (1990)

    Google Scholar 

  4. K. Klueger, K. Moritz, W. Paul, U. Trinks: Nucl. Instrum. Methods228, 240 (1985)

    Google Scholar 

  5. N. Masuhara, J. Doyle, J. Sandberg, D. Kleppner, T. Greytak, H. Hess, G. Kochanski: Phys. Rev. Lett.61, 935 (1988)

    Google Scholar 

  6. A. Migdall, J. Prodan, W. Phillips, T. Bergman, H. Metcalf: Phys. Rev. Lett.54, 2596 (1985) E.A. Cornell, Ch. Monroe, C.E. Wieman: Phys. Rev. Lett.67, 2439 (1991)

    Google Scholar 

  7. A. Lagendijk, I.F. Silvera, B.J. Verhaar: Phys. Rev. B33, 626 (1986)

    Google Scholar 

  8. W. Wing: Prog. Quant. Electron.8, 181 (1984)

    Google Scholar 

  9. W. Ketterle, D. Pritchard: Appl. Phys. B54, 403 (1992)

    Google Scholar 

  10. V.V. Vladimirskii: Sov. Phys.-JETP12, 740 (1961)

    Google Scholar 

  11. A. Shapere, F. Wilczek (eds):Geometric Phases in Physics (World Scientific, Singapore 1988)

    Google Scholar 

  12. Y. Aharonov, A Stern: Phys. Phys. Rev. Lett.69, 3593 1992) A Stern: Phys. Rev. Lett.68, 1022 (1992) Y. Aharonov, E. Ben-Reuven, S. Popescu, D. Rohrlide: Phys. Rev. Lett.65, 3065 (1990) J. Anandan, Y. Aharonov: Phys. Rev. Lett.65, 1697 (1990)

    Google Scholar 

  13. A. Messiah:Quantum Mechanics (de Gruyter, Berlin 1979) Chap. XVII)

    Google Scholar 

  14. This is only true if the magnetic field is low enough and one can neglect the internal structure of the atom, i.e., the Zeeman energy has to be much smaller than the hyperfine splitting. This is fulfilled in all the cases discussed here

  15. L.D. Landau, E.M. Lifshitz:Classical Mechanics (Pergamon, Oxford 1977) Chaps. 14, 15

    Google Scholar 

  16. T. Uzer, D. Forrelly, J.A. Milligan, P.L. Raynes, J.P. Skelton: Science253, 42 (1991)

    Google Scholar 

  17. A.I. Voronin: Phys. Rev. A43, 29 (1991)

    Google Scholar 

  18. R. Blümel, K. Dietrich: Phys. Rev. A43, 22 (1991)

    Google Scholar 

  19. A. Scrinzi: Private communications (1994)

  20. M. Wilkinson: J. Phys. A17, 3459 (1984) H. Kratsuji, S. Iida: Prog. Theor. Phys.74, 439 (1985)

    Google Scholar 

  21. X.L. Yang, H.S. Guo, F.T. Chan, K.W. Wong, W.Y. Ching: Phys. Rev. A43, 1186 (1991)

    Google Scholar 

  22. J. Schmiedmayer: Phys. Rev. Lett. (1994) (submitted)

  23. N. Ramsey:Molecular Bems (Oxford Univ. Press. Oxford 1985) p. 37

    Google Scholar 

  24. For a review see: M. Wilkins Phys. Rev. A (1994) (submitted)

  25. L. Hau, M. Burns, J. Golovchenko: Phys. Rev. A45, 6468 (1992)

    Google Scholar 

  26. H. Lamb:Dynamics (Cambridge Univ. Press, Cambridge 1929)

    Google Scholar 

  27. L.D. Landau, E.M. Lifshitz:Quantum Mechanics (Pergamon, Oxford 1977) p. 54

    Google Scholar 

  28. K.M. Case: Phys. Rev.80, 797 (1950)

    Google Scholar 

  29. P.M. Morse, H. Feshbach:Mechods of Theoretical Physics, Vol. II (McGraw-Hill, New York 1953) p. 1665

    Google Scholar 

  30. L. Hau: Private communication L. Hau: to be published

  31. J.M. Levy-Leblond: Phys. Rev.153, 1 (1967) C. Desfrancois, B. Baillon, J.P. Sohermann, S.T. Arnold, J.H. Hendrieks, K.H. Bowen: Phys. Rev. Lett.72, 48 (1994) C. Desfrancois, H. Abdoul-Carime, N. Khelifa, J.P. Schermann: Phys. Rev. Lett.73, 2436 (1994)

    Google Scholar 

  32. H. Baatelan, R. Abfatterer, S. Wehinger, J. Schmiedmayer: InProc. Europ. Quant. Electron. Conf. (1994) (in press)

  33. B. Kramer (ed):Quantum Coherence in Mesoscopic Systems NATO ASI Ser. B, Vol. 254 (Plenum, New York 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to H. Walther on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmiedmayer, J. A wire trap for neutral atoms. Appl. Phys. B 60, 169–179 (1995). https://doi.org/10.1007/BF01135859

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01135859

PACS

Navigation