Skip to main content
Log in

The crystal structure of 2O brittle mica: Anandite

Die Kristallstruktur des 2 O Sprödglimmers Anandit

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

Anandite has an approximate formula of Ba(Fe3+, Fe2+)3[Si2(Fe3+, Fe2+, Si)2O10−x(OH)x] (S, Cl) (OH), withx=0−1, and belongs to the 2 O brittle mica group. It is orthorhombic; space groupPnmn;a=5.468(9) Å,b=9.489(18)Å,c=19.963(11) Å;Z=4.

The structure was determined from 3dim. Weissenberg-data, starting with an approximate structure in the pseudo space groupCcmm. Least squares refinement resulted inR=0.061 for 409 photometric intensities, andR=0.131 for all 853 observedhkl-reflexions.

The iron of the tetrahedral layer is concentrated in one of the two crystallographically different kinds of tetrahedra. The basal oxygen rings of the tetrahedral layer form approximate hexagons and have not the ditrigonal configuration of the common micas. This peculiarity is considered to be a consequence of the size and charge of the barium ion. The role of OH in the common micas is played partly by S2− and Cl in anandite.

Zusammenfassung

Anandit hat die ungefähre Formel Ba(Fe3+, Fe2+)3[Si2(Fe3+, Fe2+, Si)2O10−x(OH)x] (S, Cl) (OH) mitx=0–1 und gehört zur 2O Sprödglimmergruppe. Er ist rhombisch; RaumgruppePnmn; a=5,468(9) Å,b=9,489(18) Å,c=19,963(11) Å;Z=4.

Die Struktur wurde aus Weissenberg-Daten bestimmt, wobei mit einer approximativen Struktur in der PseudoraumpruppeCcmm begonnen wurde. Die Verfeinerung nach der Methode der kleinsten Quadrate führte für 409 photometrierte Reflexe aufR=0,061 und für alle 853 beobachtetenhkl-Reflexe aufR=0,131.

Der Eisengehalt der Tetraederschicht ist in einer der beiden kristallographisch verschiedenen Tetraederarten konzentriert. Die basalen Sauerstoffringe der Tetraederschicht bilden annäherungsweise Sechsecke und haben nicht die ditrigonale Konfiguration der gewöhnlichen Glimmer. In Anandit spielen S2− und Cl teilweise die Rolle der Hydroxylgruppen in den gewöhnlichen Glimmern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ciani, G., M. Manassero, andM. Sansoni, 1971: Absorption correction in the Weissenberg and precession geometries. J. Appl. Cryst.4, 173–174.

    Google Scholar 

  • Cromer, D. T., 1965: Anomalous dispersion corrections computed from self-consistant field relativistic Dirac-Slater wave functions. Acta Cryst.18, 17–23.

    Google Scholar 

  • Donnay, G., N. Morimoto, H. Takeda, andJ. D. H. Donnay, 1964: Triocathedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Cryst.17, 1369–1373.

    Google Scholar 

  • Franzini, M., andL. Schiaffino, 1963: On the crystal structure of bioties. Z. Krist.119, 297–309.

    Google Scholar 

  • — 1966: Nuovi dati sulla struttura delle miche triottaedriche. Atti Soc. Toscana Sci. Nat. Mem. Ser. A73, 620–631.

    Google Scholar 

  • — 1969: The A and B micas layers and the crystal structure of sheet silicates. Contr. Min. Petr.21, 203–224.

    Google Scholar 

  • Gatineau, L., 1963: Localisation des remplacements isomorphiques dans la muscovite. Comp. Rend.256, 4648–4649.

    Google Scholar 

  • —, 1964: Structure réelle de la muscovite. Répartition des substitutions isomorphes. Bull. Soc. franc. Min. Crist.87, 321–355.

    Google Scholar 

  • Güven, N., 1971: The crystal structures of 2 M1 phengite and 2 M1 muscovite. Z. Krist.134, 196–212.

    Google Scholar 

  • Güven, N., andC. W. Burnham, 1967: The crystal structure of 3T muscovite. Z. Krist.125, 163–183.

    Google Scholar 

  • —, 1971: Structural factors controlling staking sequences in dioctahedral micas. Clays and Clay Minerals,19, 159–165.

    Google Scholar 

  • Hamilton, W. C., 1959: On the isotropic temperature factor equivalent to a given anisotropic temperature factor. Acta Cryst.12, 609–610.

    Google Scholar 

  • Hanson, H. P., F. Herman, J. D. Lea, andS. Skillman, 1964: HFS atomic scattering factors. Acta Cryst.17, 1040–1044.

    Google Scholar 

  • Lovering, J. F., andJ. B. Widdowson, 1968: Electron-microprobe analysis of anandite. Min. Mag.36, 871–874.

    Google Scholar 

  • Mathieson, A. Mc L., 1958: Mg-vermiculite, a refinement and re-examination of crystal structure of the 14,36.Å phase. Amer. Min.43, 216–227.

    Google Scholar 

  • Meier, W. M., undH. Villiger, 1969: Die Methode der Abstandsverfeinerung zur Bestimmung der Atomkoordinaten idealisierter Gerüststrukturen. Z. Krist.129, 411–423.

    Google Scholar 

  • Pattiaratchi, D. B., E. Saari, andTh. G. Sahama, 1967: Anandite, a new barium iron silicate from Wilagedera, North Western Province, Ceylon. Min. Mag.36, 1–4.

    Google Scholar 

  • Radoslovich, E. W., 1960: The structure of muscovite: KAl2(Si3Al)O10(OH)2. Acta Cryst.13, 919–932.

    Google Scholar 

  • — 1961: Surface symmetry and cell dimensions of layer-lattice silicates. Nature191, 67–68.

    Google Scholar 

  • — andK. Norrish, 1962: The cell dimensions and symmetry of layerlattice silicates. I. Some structural considerations. Amer. Min.47, 599–616.

    Google Scholar 

  • — 1962: The cell dimensions and symmetry of layer-lattice silicates. II. Regression relations. Amer. Min.47, 617–636.

    Google Scholar 

  • — 1963: The cell dimensions and symmetry of layer-lattice silicates. IV. Interatomic forces. Amer. Min.48, 76–99.

    Google Scholar 

  • Steinfink, H., 1962: Crystal structure of a trioctahedral mica: phlogopite. Amer. Min.47, 886–896.

    Google Scholar 

  • Takeda, H., andJ. D. H. Donnay, 1966: Trioctahedral one-layer micas. III. Crystal structure of a synthetic lithium fluormica. Acta Cryst.20, 638–646.

    Google Scholar 

  • — 1971: Distribution of mica polytypes among space groups. Amer. Min.56, 1042–1056.

    Google Scholar 

  • Takéuchi, Y., andR. Sadanaga, 1959: The crystal structure of xanthophillite. Acta Cryst.12, 945–946.

    Google Scholar 

  • — 1966: Structures of brittle micas. Clays and Clay Minerals. 1–24. Proc. 13th Nat. Conf. London: Pergamon.

    Google Scholar 

  • Veitch, L. G., andE. W. Radoslovich, 1963: The cell dimensions and symmetry of layer-lattice silicates. III. Octahedral ordering. Amer. Min.48, 62–75.

    Google Scholar 

  • Villiger, H., 1969: A FORTRAN computer program for the least squares refinement of interatomic distances. Inst. f. Kristall. und Petrogr. Zürich.

  • Zachariasen, W. H., 1963: The crystal structure of monoclinic metaboric acid. Acta Cryst.16, 385–389.

    Google Scholar 

  • —, 1963: The secondary extinction correction. Acta. Cryst.16, 1139–1144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuseppetti, G., Tadini, C. The crystal structure of 2O brittle mica: Anandite. TMPM Tschermaks Petr. Mitt. 18, 169–184 (1972). https://doi.org/10.1007/BF01134206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01134206

Keywords

Navigation