Skip to main content
Log in

Determination of primary and secondary solvation numbers and binding constants based on the shift of a proton-transfer equilibrium resulting from hydrogen bonding solvation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We show how the shift in the equilibrium constant K PT for formation of a proton-transfer adduct in a non-interactive solvent, upon addition of a second, hydrogen-bonding solvent S reveals the nature of the hydrogen bonding solvation process. Data are analyzed for the pentachlorophenoltriethylamine proton-transfer equilibrium in cyclohexane solvent, under-going solvation by the acidic alcohols, 2,2,2-trichloroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol. K PT vs. [S] data are fitted to a binding isotherm corresponding to two-stage solvation of both the adduct and the free amine. Stoichiometries and binding constants for both primary and secondary solvation of both solvated species are determined as adjustable parameters. Best fits correspond to both the adduct and free amine under-going primary solvation by one alcohol molecule (presumably at the oxygen and nitrogen lone-pairs, respectively) followed by secondary solvation by one to nine additional alcohol molecules, with binding constants ranging from 2100 M−1, for primary solvation of the adduct by hexafluoro-2-propanol, down to 7 M−1, for secondary solvation of the amine by trichloroethanol. We speculate that the secondary solvation numbers represent average sizes of hydrogen-bonded alcohol chains, nucleated by the enhanced basicity of the primary-solvation alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Reyes and R. M. Scott,J. Phys. Chem. 84, 3600 (1980);

    Google Scholar 

  2. E. D. Berman, R. Thomas, P. Stahl, and R. M. Scott,Can. J. Chem. 65, 1594 (1987);

    Google Scholar 

  3. Z. Ye, S. Yazdani, R. Thomas, G. Walker, D. White, and R.M. Scott,J. Mol. Struct. 177, 513 (1988);

    Google Scholar 

  4. M. Abduljaber and R. M. Scott,J. Mol. Struct. 237, 285 (1990);

    Google Scholar 

  5. M. Zhou, H.-W. Zhu, S. Kasham, and R. M. Scott,J. Mol. Struct. 270, 187 (1992);

    Google Scholar 

  6. H.-W. Zhu, M.S. Thesis, Eastern Michigan University, Ypsilanti (1994);

  7. S. E. Schullery and R. M. Scott,J. Mol. Struct. 322, 287 (1994);

    Google Scholar 

  8. A. Chen, S. E. Schullery, and R. M. Scott,J. Mol. Struct. 322, 321 (1994);

    Google Scholar 

  9. N. Hemati, R. Khan, and R. M. Scott,J. Mol. Struct. 322, 379 (1994).

    Google Scholar 

  10. Th. Zeegers-Huyskens and P. Huyskens, inMolecular Interactions, Vol. 2, H. Ratajczak and W. J. Orville-Thomas, eds., (Wiley, New York, 1980);

    Google Scholar 

  11. S. Vinogradov and R. A. Linnell,Hydrogen Bonding (Van Nostrand-Reinhold, New York, 1971).

    Google Scholar 

  12. R. Stewart,The Proton: Applications to Organic Chemistry, in “Organic Chemistry”, Vol. 46, H. H. Wasserman, ed., (Academic, New York, 1985) Chap. 4;

    Google Scholar 

  13. S. K. Burley and G. A. Petsko, inAdvances in Protein Chemistry, Vol 39, C. B. Anfinsen, J. T. Edsall, F. M. Richards, and D. S. Eisenberg, eds., (Academic, New York, 1988);

    Google Scholar 

  14. J. Sponer and P. Hobza,J. Am. Chem. Soc. 116, 709 (1994).

    Google Scholar 

  15. C. L. Perrin and R. K. Gipe,Science 238, 1393 (1987);

    Google Scholar 

  16. F. Sciortino, A. Geiger, and H. E. Stanley,J. Chem. Phys. 96, 3857 (1992);

    Google Scholar 

  17. M. D. Newton,J. Phys. Chem. 87, 4288 (1983).

    Google Scholar 

  18. J. L. Chen, L. Noodleman, D. A. Case, and D. Bashford,J. Phys. Chem. 98, 11059 (1994);

    Google Scholar 

  19. M. J. Kamlet, J. L. Abboud, and R. W. Taft,J. Am. Chem. Soc. 99, 6027 (1977);

    Google Scholar 

  20. J. Zeng, J. S. Craw, N. S. Hush, and J. R. Reimers,J. Phys. Chem. 98, 11075 (1994);

    Google Scholar 

  21. M. J. Kamlet, J. L. M. Abboud, M. J. H. Abraham, and R. W. Taft,J. Org. Chem. 48, 2877 (1983).

    Google Scholar 

  22. P. Debye,Polar Molecules (Chemical Catalog Co., 1929; reprinted by Dover Publications, New York), Chap. 3;

  23. G. M. Barrow,Physical Chemistry for the Life Sciences, 2nd edn., (McGraw-Hill, New York, 1981) p. 131.

    Google Scholar 

  24. K. A. Connors and D. Khossravi,J. Solution Chem. 22, 677 (1993);

    Google Scholar 

  25. R. W. Impey, P. A. Madden, and I. R. McDonald,J. Phys. Chem. 87, 5071 (1983);

    Google Scholar 

  26. E. M. Arnett,J. Chem. Educ. 62, 385 (1985);

    Google Scholar 

  27. N. Matubayasi, L. H. Reed, and R. H. Levy,J. Phys. Chem. 98, 10640 (1994).

    Google Scholar 

  28. M. D. Joesten and L. J. Schaad,Hydrogen Bonding (Marcell Dekker, New York, 1974);

    Google Scholar 

  29. G. C. Pimentel and A. L. McClellan,The Hydrogen Bond (Freeman, New York, 1960);

    Google Scholar 

  30. L. H. Thomas,J. Chem. Soc. 1995 (1963);

  31. R. M. Haseldine,J. Chem. Soc. 1757 (1953);

  32. A. Planckaert and C. Sandorfy,Can. J. Chem. 50, 296 (1972).

    Google Scholar 

  33. A. C. Legon and D. J. Millen,Chem. Soc. Rev. 71 (1992);

  34. R. M. Baum,Chem. Eng. News 70, 20 (1992).

    Google Scholar 

  35. N. F. Dalleska, K. Honma, L. S. Sunderlin, and P. B. Armentrout,J. Am. Chem. Soc. 116, 3519 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schullery, S.E., Hemati, N. & Scott, R.M. Determination of primary and secondary solvation numbers and binding constants based on the shift of a proton-transfer equilibrium resulting from hydrogen bonding solvation. J Solution Chem 24, 771–793 (1995). https://doi.org/10.1007/BF01131044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01131044

Key Words

Navigation