Skip to main content
Log in

Continuous creep cavity nucleation by stochastic grain-boundary sliding

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Creep cavitation in metals and ceramics is generally considered to occur by the nucleation, growth, and coalescence of grain-boundary cavities. By considering grain-boundary slidings as the process driving force, a stochastic model is proposed for continuous cavity nucleation in metals and ceramics subjected to creep loading. The nucleation rate is shown to be directly proportional to the number of grain-boundary sliding events. The dependence of the number of cavities on grain boundary sliding displacement, creep strain, and time are established and compared with available experimental data of alumina, copper, and copper alloys. This comparison supports the contention that creep cavity nucleation in metals and ceramics does originate from stochastic grain-boundary sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Raj andM. F. Ashby,Acta Metall. 23 (1975) 653.

    Google Scholar 

  2. R. Raj,ibid. 26 (1978) 995.

    Google Scholar 

  3. A. S. Argon, I. W. Chen andC. W. Lau, in “Creep-Fatigue-Environment Interactions”, edited by R. M. Pelloux and N. S. Stoloff (Metallic Society AIME, New York, 1980) pp. 46–85.

    Google Scholar 

  4. K. S. Chan, R. A. Page andJ. Lankford,Acta Metall. 34 (1986) 2361.

    Google Scholar 

  5. A. J. Perry,J. Mater. Sci. 9 (1974) 1016.

    Google Scholar 

  6. M. H. Yoo andH. Trinkaus,Metall. Trans. 14A (1983) 547.

    Google Scholar 

  7. W. D. Nix,Scripta Metall. 17 (1983) 1.

    Google Scholar 

  8. A. S. Argon,ibid. 17 (1983) 5.

    Google Scholar 

  9. S. H. Goods andT. G. Nieh,ibid. 17 (1983) 17.

    Google Scholar 

  10. B. F. Dyson,ibid. 17 (1983) 31.

    Google Scholar 

  11. H. J. Larson andB. O. Shubert, in “Probabilistic Models in Engineering Sciences”, Vol. 2 (Wiley, New York, 1979) pp. 544–83.

    Google Scholar 

  12. H. Gleiter andB. Chalmer,Prog. Mater. Sci. 16 (1972) 179.

    Google Scholar 

  13. J. Intrater andE. Machlin,J. Inst. Metals 88 (1959–1960) 305.

    Google Scholar 

  14. F. N. Rhines, W. E. Bond andM. A. Kissel,Trans. ASM 48 (1956) 919.

    Google Scholar 

  15. S. K. Tung andR. Maddin,Trans. AIME 209 (1957) 905.

    Google Scholar 

  16. F. Weinberg,Acta Metall. 2 (1954) 889.

    Google Scholar 

  17. F. Weinberg,Trans. AIME 212 (1985) 808.

    Google Scholar 

  18. K. E. Putlick andR. King,J. Inst. Metals 80 (1951–1952) 537.

    Google Scholar 

  19. M. A. Adams andG. T. Murray,J. Appl. Phys. 33 (1962) 2126.

    Google Scholar 

  20. R. A. Page andK. S. Chan,Metall. Trans. 18A (1987) 1843.

    Google Scholar 

  21. D. McLean andM. H. Farmer,J. Inst. Metals 83 (1954) 1.

    Google Scholar 

  22. Idem, ibid. 85 (1956) 41.

    Google Scholar 

  23. A. J. Perry,J. Mater. Sci. 9 (1974) 1016.

    Google Scholar 

  24. J. S. Wang, J. J. Stephens andW. D. Nix,Acta Metall. 33 (1985) 109.

    Google Scholar 

  25. R. D. Gifkins,ibid. 4 (1956) 98.

    Google Scholar 

  26. T. Watanabe,Metall. Trans. 14A (1983) 531.

    Google Scholar 

  27. I. Servi andN. J. Grant,Trans. AIME 191 (1951) 909.

    Google Scholar 

  28. N. J. Grant andA. W. Mullendore, “Deformation and Fracture at Elevated Temperatures” (Massachusetts Institute of Technology, Cambridge, 1965).

    Google Scholar 

  29. A. G. Evans andA. S. Rana,Acta Metall. 28 (1980) 129.

    Google Scholar 

  30. H. Hubner andJ. Stark, “High Tech Ceramics” Part B, edited by P. Vencenzini (Elsevier, Amsterdam, 1987) p. 1247.

    Google Scholar 

  31. S. M. Wiederhorn, B. J. Hockey, R. F. Krause Jr andK. Jakus,J. Mater. Sci. 21 (1986) 810.

    Google Scholar 

  32. R. A. Page andJ. Lankford,J. Amer. Ceram. Soc. 66 (1983) C-146.

    Google Scholar 

  33. R. A. Page, J. Lankford andS. Spooner,Acta Metall. 32 (1984) 3360.

    Google Scholar 

  34. Idem, ibid. 32 (1984) 1275.

    Google Scholar 

  35. J. Lankford, K. S. Chan andR. A. Page, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1986) p. 327.

    Google Scholar 

  36. R. A. Page, J. Lankford, K. S. Chan, K. Hardman-Phyne andS. Spooner,J. Amer. Ceram. Soc. 70 (1987) 137.

    Google Scholar 

  37. I. W. Chen andA. S. Argon, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, UK, 1981) p. 289.

    Google Scholar 

  38. A. S. Argon, in “Recent Advance in Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, UK, 1982) pp. 1–52.

    Google Scholar 

  39. A. G. Evans, J. R. Rice andJ. P. Hirth,J. Amer. Ceram. Soc. 63 (1980) 368.

    Google Scholar 

  40. A. Gittens,Met. Sci. J. 1 (1967) 214.

    Google Scholar 

  41. R. G. Fleck, D. M. R. Taplin andC. J. Beevers,Acta Metall. 23 (1975) 415.

    Google Scholar 

  42. G. W. Greenwood,Phil. Mag. 19 (1969) 423.

    Google Scholar 

  43. B. F. Dyson,Scripta Metall. 17 (1983) 31.

    Google Scholar 

  44. K. J. Morrissey andC. B. Carter,J. Amer. Ceram. Soc. 67 (1984) 292.

    Google Scholar 

  45. R. A. Page, J. Lankford andS. Spooner,J. Mater. Sci. 19 (1984) 3360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S., Page, R.A. Continuous creep cavity nucleation by stochastic grain-boundary sliding. J Mater Sci 25, 4622–4629 (1990). https://doi.org/10.1007/BF01129916

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129916

Keywords

Navigation