Skip to main content
Log in

Analysis of data on the vibrational-relaxation constants in CO2−N2−H2O mixtures, and optimization of a gasdynamic CO2 laser

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

The optimum stagnation parameters and compositions of the C02-N2-H20 mixture are optimized on the basis of data on the vibrational-relaxation constants. The influence of the uncertainty in the relaxation constants on the optimization results is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. S. A. Losev and V. N. Makarov, Kvantovaya Elektron. (Moscow),1, No. 7, 1633 (1974).

    Google Scholar 

  2. A. Yu. Volkov, A. I. Demin, E. M. Kudryavtsev, N. A. Shubina, and N. N. Sobolev, Abstracts of Papers, First All-Union School and Conference on the Use of Lasers in Machine Building and other Branches of Engineering, Physical Problems of Gas-Laser Development (1974), p. 23.

  3. A. Yu. Volkov, A. I. Demin, A. N. Logunov, E. M. Kudryavtsev, and N. N. Sobolev, Preprint Fiz. Inst. Akad. Nauk, Moscow, No. 4 (1977).

    Google Scholar 

  4. S. A. Losev and V. N. Makarov, Kvantovaya Elektron.,2, No. 7, 1454 (1975).

    Google Scholar 

  5. V. D. Zharkov, L. Yu. Lapushonoko, and N. N. Chebykin, Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 3–8 (1974).

    Google Scholar 

  6. R. A. Meinzer, AIAA J.,10, No. 4, 388–393 (1972).

    Google Scholar 

  7. E. M. Kudryavtsev and V. N. Faizulaev, Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 25–31 (1973).

    Google Scholar 

  8. R. L. Taylor and S. Bitterman, Rev. Mod. Phys.,41, No. 1, 26–47 (1969).

    Google Scholar 

  9. J. D. Anderson, Jr., AIAA Paper No. 74–176 (1974).

  10. J. D. Anderson, Jr. AIAA J.,12, No. 12, 1699 (1974).

    Google Scholar 

  11. A. S. Biryukov, V. K. Konyukhov, A. I. Lukovnikov, and R. I. Serikov, Zh. Eksp. Teor. Fiz.,66, 1248 (1974).

    Google Scholar 

  12. G. Inoue and S. Tsuchiya, J. Phys. Soc. Jpn.,38, No. 2, 870 (1975).

    Google Scholar 

  13. W. A. Rosser and E. T. Gerry, J. Chem. Phys.,54, 4131 (1971).

    Google Scholar 

  14. J. C. Stephenson and C. B. Moore, J. Chem. Phys.,52, 2333 (1970).

    Google Scholar 

  15. L. Doyenette, M. Margottin-Maclou, H. Gueguen, A. Carion, and L. Henry, J. Chem. Phys.,60, 697 (1974).

    Google Scholar 

  16. D. J. Seery, J. Chem. Phys., 1972,56, p. 4714.

    Google Scholar 

  17. C. J. S. M. Simpson and T. R. D. Chandler, Proc. R. Soc. London,A317, 265 (1970); C. J. S. M. Simpson and J. M. Simmie, Proc. R. Soc. London,A325, 197 (1971).

    Google Scholar 

  18. J. P. Hodgson and R. J. Hine, J. Fluid Mech.,35, 171 (1969).

    Google Scholar 

  19. M. Huetz-Aubert, P. Chevalier, and R. Tripodi, J. Chem. Phys.,54, 2289 (1971).

    Google Scholar 

  20. J. Ried, B. K. Garside, and E. A. Ballik, IEEE J. Quantum Electron.,QE 9, No. 6, 602 (1973).

    Google Scholar 

  21. A. N. Vargin, V. V. Gogokhiya, V. K. Konyukhov, and L. M. Pasynkova, Zh. Tekh. Fiz.,45, No. 3, 604 (1975).

    Google Scholar 

  22. W. A. Rosser, A. D. Wood, and E. T. Gerry, J. Chem. Phys.,50, 4996 (1969).

    Google Scholar 

  23. K. Sato and S. Tsuchiya, J. Phys. Soc. Jpn.,33, 1120–1131 (1972).

    Google Scholar 

  24. A. S. Biryukov, Tr. Fiz. Inst. Akad. Nauk,83, 12 (1975).

    Google Scholar 

  25. D. F. Heller and C. B. Moore, J. Chem. Phys.,52, 1005 (1970).

    Google Scholar 

  26. W. A. Rosser and E. T. Gerry, J. Chem. Phys.,51, 2286 (1969).

    Google Scholar 

  27. K. Bulthuis, J. Chem. Phys.,58, 5786 (1973).

    Google Scholar 

  28. J. Inoue and S. Tsuchiya, J. Phys. Soc. Jpn.,39, No. 2 479 (1975).

    Google Scholar 

  29. I. R. Hurle, M. I. Buchwald, and S. H. Bauer, Report No. 51, LPS, Ithaca, N.Y., Cornell Univ. (1970).

  30. D. J. Eckstrem and D. Berchader, J. Chem. Phys.,57, 632 (1972).

    Google Scholar 

  31. F. Cannemeyer and A. E. de Vries, Physica,74, 196 (1974).

    Google Scholar 

  32. F. D. Shields, C. C. Warf, and H. E. Bass, J. Chem. Phys.,58, 3837 (1973).

    Google Scholar 

  33. K. M. Merrill and R. C. Ammie, J. Chem. Phys.,51, 844 (1969).

    Google Scholar 

  34. H. J. Bauer and R. Schitter, J. Chem. Phys.,51, 3261 (1969).

    Google Scholar 

  35. M. I. Buchwald and S. H. Bauer, J. Chem. Phys.,76, 3108 (1972).

    Google Scholar 

  36. K. Bullthius and G. J. Ponsen, Phys. Lett.,36A, 123 (1971).

    Google Scholar 

  37. E. A. Andreev, Chem. Phys. Lett.,40, 106 (1976).

    Google Scholar 

  38. C. W. von Rosenberg, K. N. C. Bray, and N. H. Pratt, J. Chem. Phys.,56, 3230 (1972).

    Google Scholar 

  39. L. B. Evans, J. Acoust. Soc. Am.,51, 409 (1972).

    Google Scholar 

  40. A. Hertzberg, W. Christiansen, and D. Russell, in: Gasdynamic Lasers. Notebook. Univ. of Washington (1973).

  41. A. S. Biryukov, A. Yu. Volkov, E. M. Kudryavtsev, and R. I. Serikov, Kvantovaya Electron. (Moscow),3, No. 8, 1748 (1976).

    Google Scholar 

  42. A. I. Demin, E. M. Kudryavtsev, N. N. Sobolev, and V. N. Faizulaev, Kvantovaya Elektron. (Moscow),1, No. 3, 528 (1974).

    Google Scholar 

  43. J. D. Anderson, Jr. and E. L. Harris, AIAA Paper, 1972, 72–143.

  44. J. D. Anderson, Jr., R. L. Humphrey, J. S. Vamos, M. J. Plummer and R. E. Jenson, Phys. Fluids,14, No. 12, 2620 (1971).

    Google Scholar 

  45. G. Lee, F. E. Gowen, Appl. Phys. Lett.,18, No. 6, 237 (1971).

    Google Scholar 

  46. G. Lee, F. E. Gowen, and J. R. Hagen, AIAA J.,10, No. 1, 65 (1972).

    Google Scholar 

  47. A. I. Demin and E. M. Kudryavtsev, J. Phys. Soc. Jpn.,38, No. 4, 1222 (1975).

    Google Scholar 

  48. A. B. Britan, S. A. Losev, and O. P. Shatalov, Kvantovaya Elektron. (Moscow),1, No. 12, 2620 (1974).

    Google Scholar 

  49. N. Ya. Vasilik, A. D. Margolin, and V. M. Margulis, Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 23 (1974).

    Google Scholar 

  50. L. S. Krasnitskaya, A. P. Napartovich, and V. F. Sharkov, Teplofiz. Vys. Temp.,11, No. 6, 1155 (1973).

    Google Scholar 

  51. G. V. Gembarzhevskii, N. A. Generalov, and G. I. Kozlov, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 18 (1973).

    Google Scholar 

  52. K. Sato and T. Sekiguchi, J. Phys. Soc. Jpn.,35, 3151 (1973).

    Google Scholar 

  53. K. Sato and T. Sekiguchi, J. Phys. Soc. Jpn.,38, No. 4, 1223 (1973).

    Google Scholar 

  54. K. Sato and T. Sekiguchi, J. Phys. Soc. Jpn.,39, No. 5, 1352 (1975).

    Google Scholar 

Download references

Authors

Additional information

Translated from Trudy Ordena Lenina Fizicheskogo Instituta im. P. N. Lebedeva, Vol. 113, pp. 150–167 (1979).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, A.Y., Demin, A.I., Logunov, A.N. et al. Analysis of data on the vibrational-relaxation constants in CO2−N2−H2O mixtures, and optimization of a gasdynamic CO2 laser. J Russ Laser Res 3, 148–162 (1982). https://doi.org/10.1007/BF01127360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01127360

Keywords

Navigation