Skip to main content
Log in

Lasers operating on cascade transitions of triatomic molecules

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

The general conditions necessary for the operation of gas lasers based on cascade vibrational-rotational transitions of molecules in the pulse-periodic regime are formulated. The features of such triatomic-molecule lasers with arbitrary excitation are discussed. A computation model is proposed for determining the energy characteristics (maximum attainable efficiency, average and relative lasing power, specific energy output) of free-flow cascade lasers. Systems are analyzed with various excitation methods: gasdynamic (including those with optical feedback), electric-discharge, and chemical (with the DF-CO2 laser as the example). Practical recommendations with respect to the choice of mixture composition, optimum cavity lengths along the gas stream, and Q-switching frequency are made for the cascade lasers. A molecular gasdynamic laser emitting three wavelengths simultaneously is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. S. A. Losev, Gasdynamic Lasers [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  2. A. S. Bashkin, I. A. Igosihin, A. I. Nikitin, et al., “Chemical lasers,” in: Itogi Nauki Tekh. (Radiofizika), VINITI, Moscow (1975).

    Google Scholar 

  3. B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  4. A. S. Bashkin, V. I. Igoshin, A. N. Oraevskii, and V. A. Shcheglov, in: Chemical Lasers, N. G. Basov (ed.) [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  5. R. W. F. Gross and J. F. Bott (eds.), Handbook of Chemical Lasers, Wiley, New York (1976).

    Google Scholar 

  6. V. A. Danilychev, O. M. Kerimov, and I. V. Kovsh, in: Itogi Nauki i Tekhniki (Radiofizika), VINITI, Moscow (1977).

    Google Scholar 

  7. T. J. Manuccia, J. A. Stregack, N. W. Harris, et al., “14-and 16-μ gasdynamic CO2 lasers,” Appl. Phys. Lett.,29, No. 6, 360–362 (1976).

    Google Scholar 

  8. N. V. Karlov, Yu. B. Konev, I. V. Kochetov, et al., “Feasibility of lasing at 16-and 14-μ wavelengths in gas-discharge CO2 lasers,” Pis'ma Zh. Tekh. Fiz.,2, No. 23, 1062–1065 (1976).

    Google Scholar 

  9. W. H. Kasner and L. D. Pleasance, “Laser emission from the 13 9-μm 1000-0110 CO2 transition in pulsed electrical discharges,” Appl. Phys. Lett.,31, No. 2, 82–84 (1977).

    Google Scholar 

  10. B. L. Wexler and R. W. Waynont, “High-average-power 16-μm gasdynamic CO2 laser using multipass cavity” Appl. Phys. Lett.,34, No. 10, 674 (1979).

    Google Scholar 

  11. K. Suzuki, S. Saito, M. Obara, et al., “Theoretical study for 16-μm CO2 gasdynamic laser,” J. Appl. Phys.,51, No. 8, 4003–4009 (1980).

    Google Scholar 

  12. A. G. Velikanov, A. M. Gorshun, U. P. Neshchimenko, et al., “Frequency-selective lasing on the CO2 molecule in the 16-μm band,” Kvantovaya Elektron. (Moscow),8, No. 1, 156–159 (1981).

    Google Scholar 

  13. A. S. Biryukov, “Kinetics of physical processes in gasdynamic lasers,” Trudy FIAN,83, 13–86 (1975).

    Google Scholar 

  14. A. Yu. Volkov, A. I. Demin, A. N. Logunov, et al., “Optimization of CO2-N2-H2O gasdynamic laser,” FIAN Preprint No. 4, Moscow (1977).

  15. G. Inoue and S. Tsuchiya, “Vibration-to-vibration energy, transfer of CO2 (0001) with N2 and CO at low temperatures,” J. Phys. Soc. Jpn.,39, No. 2, 479–486 (1975).

    Google Scholar 

  16. A. S. Biryukov, V. K. Konokhov, A. I. Lukovnikov, et al., “Relaxation of vibrational energy of the 0001 level of the CO2 molecules,” Zh. Eksp. Teor. Fiz.,66, No. 4, 1248–1257 (1974).

    Google Scholar 

  17. G. Inoue and S. Tsuchiya, “Vibrational relaxation of CO2 (0001) in CO2, He, Ne, and Ar in temperature range of 300–140 K,” J. Phys. Soc. Jpn.,38, No. 3, 870–875 (1975).

    Google Scholar 

  18. J. Anderson, Gasdynamic Lasers. Introduction [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  19. A. P. Zuev and B. N. Tkachenko, “Determination of the relaxation time of the level (v=1) of N2 in the presence of water vapor,” Izv. Vyssh. Uchebn. Zaved., Fizika, No. 6, 84–89 (1978).

    Google Scholar 

  20. J. Taine, F. Lepoutre, and G. Louis, “A photoacoustic study of the collisional deactivation of CO2 by N2, CO, and O2 between 160 and 375K,” Chem. Phys. Lett.,58, No. 4, 611–615 (1978).

    Google Scholar 

  21. A. A. Vedeneev, A. Yu. Volkov, A. I. Demin, et al., “Influence of water, hydrogen, and helium impurities on the population of the vibrational levels of carbon dioxide under strong nonequilibrium conditions of supersonic cooling,” FIAN Preprint No. 26, Moscow (1981).

  22. V. K. Konyukov and V. N. Faizullaev, “Influence of gas condensation on the rate of relaxation processes in gasdynamic lasers,” Kvantovaya Elektron. (Moscow),1, No. 12, 2623–2625 (1974).

    Google Scholar 

  23. S. Saito, M. Obara, and T. Fujioka, “Computer simulation of cw 16-μm CO2 gasdynamic laser,” Appl. Opt.,20, No. 16, 2838–2842 (1981).

    Google Scholar 

  24. Yu. D. Zaroslov, N. V. Karlov, I. O. Kovalev, et al., “Lasing on the transitions 1000–0110 and 0200–0110 of the CO2 molecule in a pulsed gas discharge,” Pis'ma Zh. Tekh. Fiz.,5, No. 12, 759–764 (1979).

    Google Scholar 

  25. W. H. Kasner, V. A. Toth, and M. A. Akerman, “16-μm CO2 bending-mode laser system,” IEEE J. Quant. Electr.QE-17, No. 12, Pt. 2, 22 (1981).

    Google Scholar 

  26. G. J. Schulz, “Vibrational excitation of N2, CO, and H2 by electron impact,” Phys. Rev. A,135, No. 4, 988–994 (1964).

    Google Scholar 

  27. B. F. Gordiets, M. N. Markov, and L. A. Shelepin, “Theory of infrared radiation of the earth's outer space,” Trudy FIAN,105, 7–71 (1979).

    Google Scholar 

  28. M. J. Boness and G. J. Shulz, “Vibrational excitation of CO2 by electron impact,” Phys. Rev. Lett.,21, No. 15, 1031–1034 (1968).

    Google Scholar 

  29. A. V. Gurevich, “Some features of ohmic heating of electron gas in a plasma,” Zh. Eksp. Teor. Fiz.,38, No. 1, 116–120 (1960).

    Google Scholar 

  30. A. V. Gurevich, “Electron temperature in a plasma in an alternating electric field,” Zh. Eksp. Teor. Fiz.,35, No. 2, 392–400 (1968).

    Google Scholar 

  31. W. L. Nighan, “Electron energy distributions and collision rates in electrically excited N2, CO, and CO2,” Phys. Rev. A,2, No. 5, 1989–1999 (1970).

    Google Scholar 

  32. Ya. L. Al'pert, V. L. Ginzburg, and E. L. Fainberg, Radio Wave Propagation [in Russian], Gosatomizdat, Moscow (1953).

    Google Scholar 

  33. F. Lepoutre, T. Lous, and T. Taine, “A photoacoustic study of intramolecular energy transfer in CO2 deactivated by monoatomic gases between 153 and 393 K,” J. Chem. Phys.,70, No. 5, 2225–2235 (1979).

    Google Scholar 

  34. K. P. Mishchenko and A. A. Ravdelya (eds.), Short Handbook of Physical and Chemical Quantities [in Russian], Khimiya, Leningrad (1972).

    Google Scholar 

  35. D. C. Cartwright, “Rate coefficients and inelastic momentum transfer cross sections for electronic excitation of N2 by electrons,” J. Appl. Phys.,49, No. 7, 3855–3862 (1978).

    Google Scholar 

  36. G. N. Abramovich, Applied Gasdynamics [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  37. A. A. Stepanov and V. A. Shcheglov, “Chain mechanism of excitation of a cw chemical HF laser with a cylindrical nozzle block,” Kvantovaya Elektron. (Moscow),6, No. 7, 1476–1483 (1979).

    Google Scholar 

  38. A. S. Biryukov, R. I. Serikov, and A. M. Starik, “Vibrational energy exchange in systems with optical feedback,” Kvantovaya Elektron. (Moscow),9, No. 1, 36–43 (1982); FIAN Preprint No. 118, Moscow (1980).

    Google Scholar 

  39. A. S. Biryukov and V. A. Shcheglov, “Gas lasers on cascade transitions of linear triatomic molecules,” Kvantovaya Elektron. (Moscow),8, No. 11, 2371–2382 (1981).

    Google Scholar 

  40. B. I. Vasil'ev, A. Z. Grasyuk, G. P. Dyad'kin, and N. P. Furzikov, “Optically pumped CF4 laser,” Kratk. Soobshch. Fiz. FIAN, No. 2, 34–39 (1978).

    Google Scholar 

  41. V. Yu. Baranov, B. I. Vasil'ev, E. P. Velikhov, et al., “Pulse-periodic regime of optically pumped CF4 laser with average lasing power 0.2 W,” Kvantovaya Elektron. (Moscow),5, No. 4, 940–943 (1978).

    Google Scholar 

  42. S. S. Alimpiev, G. S. Baranov, N. V. Karlov, et al., “Retuning and stabilization of optically pumped carbon-tetrafluoride laser,” Pis'ma Zh. Tekh. Fiz.,4, No. 3, 167–171 (1978).

    Google Scholar 

  43. A. S. Biryukov, I. V. Karakhanova, N. A. Konoplev, and V. A. Shcheglov, “Cascade CO2 lasers with electric-discharge excitation,” Kvantovaya Elektron. (Moscow),10, No. 8, 1667–1676 (1983).

    Google Scholar 

Download references

Authors

Additional information

Quantum Radiophysics and Optics Division, Lebedev Physics Institute. Translated from Preprint No. 177 of the Lebedev Physics Institute, Academy of Sciences of the USSR, Moscow, 1989

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biryukov, A.S., Shcheglov, V.A. Lasers operating on cascade transitions of triatomic molecules. J Russ Laser Res 11, 145–171 (1990). https://doi.org/10.1007/BF01120904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120904

Keywords

Navigation