Skip to main content
Log in

Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth

Review

  • Published:
Bioscience Reports

Abstract

This review considers the role of antizyme, of amino acids and of protein synthesis in the regulation of polyamine biosynthesis.

The ornithine decarboxylase of eukaryotic ceils and ofEscherichia coli coli can be non-competitively inhibited by proteins, termed antizymes, which are induced by di-and poly- amines. Some antizymes have been purified to homogeneity and have been shown to be structurally unique to the cell of origin. Yet, the E. c o l i antizyme and the rat liver antizyme cross react and inhibit each other's biosynthetic decarboxylases. These results indicate that aspects of the control of polyamine biosynthesis have been highly conserved throughout evolution.

Evidence for the physiological role of the antizyme in mammalian cells rests upon its identification in normal uninduced cells, upon the inverse relationship that exists between antizyme and ornithine decarboxylase as well as upon the existence of the complex of ornithine decarboxylase and antizyme in vivo. Furthermore, the antizyme has been shown to be highly specific; its Keq for ornithine decarboxylase is 1.4 x 1011 M-1. In addition, mammalian ceils contain an anti-antizyme, a protein that specifically binds to the antizyme of an ornithine decarboxylase-antizyme complex and liberates free ornithine decarboxylase from the complex. In B. coli , in which polyamine biosynthesis is mediated both by ornithine decarboxylase and by arginine decarboxylase, three proteins (one acidic and two basic) have been purified, each of which inhibits both these enzymes. They do not inhibit the biodegradative ornithine and arginine decarboxylases nor lysine decarboxylase. The two basic inhibitors have been shown to correspond to the ribosomal proteins S20/L26 and L34, respectively. The relationship of the acidic antizyme to other known B. coli proteins remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canellakis ES, Viceps-Madore D, Kyriakidis DA and Heller JS (1979) Curr. Topics Cell. Regul. (Horecker B & Stadtman E, eds),15, 155–202, Academic Press, New York.

    Google Scholar 

  2. Cochet C & Chambae EM (1983) Mol. Cell Endocrinol.30, 247–266.

    Google Scholar 

  3. Pegg AE & McCann PP (1982) Am. J. Physiol.243, 212–221.

    Google Scholar 

  4. Scalabrino G & Ferioli ME (1982) Adv. Cancer Res.36, 1–102.

    Google Scholar 

  5. Heby O (1981) Differentiation19, 1–20.

    Google Scholar 

  6. Tabor CW & Tabor H (1984) Ann. Rev. Biochem.53, 749–790.

    Google Scholar 

  7. Cohen SS (1971) Introduction to the Polyamines, Prentice-Hall, Inc., New Jersey.

    Google Scholar 

  8. Bachrach U (1973) Function of Naturally Occurring Polyamines, Academic Press, New York and London.

    Google Scholar 

  9. Herbst EJ & Snell EE (1948) J. Biol. Chem.176, 989–994.

    Google Scholar 

  10. Ham RG (1965) Proc. Natl. Acad. Sci. U.S.A.53, 288–295.

    Google Scholar 

  11. Bottenstein JE & Sato GH (1979) Proc. Natl. Acad. Sci. U.S.A.76, 514–517.

    Google Scholar 

  12. Pohjanpelto P (1972) Nature New Biol.235, 247–249.

    Google Scholar 

  13. Morris DR & Pardee AB (1965) Biochem. Biophys. Res. Commun.20, 697–702.

    Google Scholar 

  14. Morris DR & Pardee AB (1966) J. Biol. Chem.241, 3129–3135.

    Google Scholar 

  15. Beck WT, Bellantone RA & Canellakis ES (1973) Nature (London)241, 275–277.

    Google Scholar 

  16. Fong WF, Heller JS & Canellakis ES (1976) Biochim. Biophys. Acta428, 456–465.

    Google Scholar 

  17. Heller JS, Fong WF & Canellakis ES (1976) Proc. Natl. Acad. Sci. U.S.A.73, 1858–1862.

    Google Scholar 

  18. Heller JS, Kyriakidis DA, Fong WF & Canellakis ES (1977) Eur. J. Biochem.81, 545–550.

    Google Scholar 

  19. Heller JS, Chen KY, Kyriakidis DA, Fong WF & Canellakis ES (1978) J. Cell Physiol.96, 225–234.

    Google Scholar 

  20. Kyriakidis DA, Heller JS & Canellakis ES (1978) Proc. Natl. Acad. Sci. U.S.A.75, 4699–4703.

    Google Scholar 

  21. Canellakis ES, Heller JS, Kyriakidis DA & Viceps-Madore D (1981) Polyamines in Biology and Medicine (Morris DR & Marton LJ, eds),8, 83–107, Marcel Dekker, New York.

    Google Scholar 

  22. Kyriakidis DA, Heller JS & Canellakis ES (1983) Methods in Enzymology (Tabor H & Tabor DW, eds),94, 192–199.

  23. McCann PP, Tardif C & Mamont PS (1977) Biochem. Biophys. Res. Commun.75, 948–954.

    Google Scholar 

  24. McCann PP, Tardif C, Hornsperger J & Bohley P (1979) J. Cell Physiol.94, 183–188.

    Google Scholar 

  25. Kallio A, Lofman M, Poso H & Janne J (1979) Biochem. J.177, 63–69.

    Google Scholar 

  26. Branca AA & Herbst EJ (1980) Biochem. J.186, 925–931; and Herbst EJ & Branca AA (1981) in Advances in Polyamine Research (Caldarrera CM, Zappia V & Bachrach U, eds), vol 3, pp 287–297, Raven Press, New York.

    Google Scholar 

  27. Grillo MA, Bedino S & Testore G (1980) Int. J. Biochem.11, 34–42; and Boll. Soc. Ital. Sper. (1980)56, 1341–1344.

    Google Scholar 

  28. Friedman Y, Park S, Levasseur S & Burk G (1977) Biochim. Biophys. Acta500, 291–298.

    Google Scholar 

  29. Canellakis ES, Heller JS & Kyriakidis DA (1981) Advances in Polyamine Research (Caldarrera CM et al., eds), vol 3, pp 1–13, Raven Press, New York.

    Google Scholar 

  30. Canellakis ES, Kyriakidis DA, Heller JS & Pawlak JW (1981) Med. Biol.59, 279–285.

    Google Scholar 

  31. Fujita K, Murakami Y & Hayashi S (1982) Biochem. J.204, 647–652.

    Google Scholar 

  32. Kyriakidis DA (1983) Advances in Polyamine Research (Bachrach U et al., eds), vol 4, 427–436, Raven Press, New York.

    Google Scholar 

  33. Kyriakidis DA (1983) Physiol. Plant.57, 499–504.

    Google Scholar 

  34. Heller JS & Canellakis ES (1981) J. Cell Physiol.107, 207–217.

    Google Scholar 

  35. Seely JE, Poso H & Pegg AE (1982) Biochem. J.206, 311–318.

    Google Scholar 

  36. Brosnan ME, Farrell R, Wilansky H & Williamson DH (1983) Biochem. J.212, 149–153.

    Google Scholar 

  37. Seely JE, Poso H & Pegg AE (1982) Biochem. J.206, 311–318.

    Google Scholar 

  38. Metcalf BW, Bey P, Danzin C, Jong MJ, Casara P & Venuto JP (1978) J. Am. Chem. Soc.100, 2251–2253.

    Google Scholar 

  39. Hayashi S (1984) Int. Conf. on Polyamines, Budapest.

  40. Brosnan ME (1984) Int. Conf. on Polyamines, Budapest.

  41. Mitchell JLA (1984) Int. Conf. on Polyamines, Budapest.

  42. Fujita K, Murakami Y, Kameji T, Matsufuji S, Utsanomiya K, Kanamoto R & Hayashi S (1983) Advances in Polyamine Research (Bachrach U et al., eds), vol 4, pp 683–691, Raven Press, New York.

    Google Scholar 

  43. Hayashi S & Fujita K (1983) Methods in Enzymology (Tabor H & Tabor CW, eds),94, 185–199, Academic Press, New York.

    Google Scholar 

  44. Emanuelsson H & Heby O (1982) Cell. Biol. Int. Rep.6, 951–954.

    Google Scholar 

  45. Heby O (1984) Eur. J. Cell Biol.35, 264–272.

    Google Scholar 

  46. Kyriakidis DA, Flamigni F, Pawlak JW & Canellakis ES (1984) Biochem. Pharm.33, 1575–1578.

    Google Scholar 

  47. Mamont PS, Duchesne MC, Grove J & Bey P (1978) Biochem. Biophys. Res. Commun.81, 58–66.

    Google Scholar 

  48. Mamont PS, Bey P & Koch-Weser S (1980) Polyamines in Biomedical Research (Gaugas JR, ed), pp 147–149, John Wiley and Sons, Chichester, Sussex.

    Google Scholar 

  49. Pritchard ML, Seely JE, Poso H, Jefferson LS & Pegg AE (1981) Biochem. Biophys. Res. Commun.100, 1597–1603.

    Google Scholar 

  50. Obenrader MF & Prouty WF (1977) J. Biol. Chem.252, 2866–2872.

    Google Scholar 

  51. Holtta E (1975) Biochim. Biophys. Acta.399, 420–427.

    Google Scholar 

  52. Chen KY & Canellakis ES (1977) Proc. Natl. Acad. Sci. U.S.A.74, 3791–3795.

    Google Scholar 

  53. Boyle SM (1984) International Conference on Polyamines, Budapest.

  54. Costa M, Meloni M & Jones MC (1980) Biochim. Biophys. Acta608, 398–408.

    Google Scholar 

  55. Viceps-Madore P, Chen KY, Tsou HR & Canellakis ES (1982) Biochim. Biophys. Acta717, 305–315.

    Google Scholar 

  56. McConlogue L, Gupta M, Wu L & Coffino P (1984) Proc. Natl. Acad. Sci. U.S.A.81, 540–544.

    Google Scholar 

  57. Berger FG, Szymanski P, Read E & Watson G (1984) J. Biol. Chem.259, 7941–7946.

    Google Scholar 

  58. Kontula K, Torkkeli TK, Bardin CW & Janne O (1984) Proc. Natl. Acad. Sci. U.S.A.81, 731–735.

    Google Scholar 

  59. Kameji T, Fujita K, Noguchi T, Takigochi M, Mori M, Tatibana M & Hayashi S (1984) Eur. J. Biochem.144, 35–39.

    Google Scholar 

  60. Kitani T & Fujisawa H (1981) FEBS Lett.132, 296–298.

    Google Scholar 

  61. Koenig H, Goldstone AD & Lu CY (1983) Proc. Natl. Acad. Sci. U.S.A.80, 7210–7214.

    Google Scholar 

  62. Koenig H, Goldstone A & Lu CY (1983) Nature305, 530–534.

    Google Scholar 

  63. Nishizuka Y (1984) Nature308, 693.

    Google Scholar 

  64. Kitani T & Fujisawa H (1984) J. Biol. Chem.259, 10036–10040.

    Google Scholar 

  65. Kameji T, Murakami Y, Fujita K & Hayashi SI (1982) Biochim. Biophys. Acta717, 111–117.

    Google Scholar 

  66. Kitani T & Fujisawa H (1983) J. Biol. Chem.258, 235–239.

    Google Scholar 

  67. Grillo MA, Bedino S & Testore (1981) in: Advances in Polyamine Research (Caldarrera CM, V Zappia & U Bachrach, eds), vol. 3, pp 27–37, Raven Press, New York.

    Google Scholar 

  68. Obenrader MF & Prouty WF (1977) J. Biol. Chem.252, 2860–2862.

    Google Scholar 

  69. Mitchell JLA, Augustine TA & Wilson JM (1983) Biochem. J.214, 345–351.

    Google Scholar 

  70. Lau C & Slotkin TA (1982) Eur. J. Pharm.78, 99–105.

    Google Scholar 

  71. Haddox MK & Russell DH (1981) Biochemistry20, 6721–6723.

    Google Scholar 

  72. Rinehart CA & Chen KY (1984) J. Biol. Chem.259, 4750–4756.

    Google Scholar 

  73. Rinehart CA, Viceps-Madore D, Fong WF, Ortiz JG & Canellakis ES (1985) J. Cell. Phys. in press.

  74. Rinehart CA & Canellakis ES (1985) Proc. Natl. Acad. Sci. U.S.A. in press.

  75. Oxender DF & Christensen HN (1963) J. Biol. Chem.253, 3087–3091.

    Google Scholar 

  76. Kelley DS & Potter VR (1978) J. Biol. Chem.253, 3087–3091.

    Google Scholar 

  77. Jacob F & Monod J (1961) J. Mol. Biol.3, 318–356.

    Google Scholar 

  78. Heller JS, Kyriakidis DA & Canellakis ES (1983) Biochim. Biophys. Acta760, 154–162.

    Google Scholar 

  79. Heller JS, Rostomily R, Kyriakidis DA & Canellakis ES (1983) Proc. Natl. Acad. Sci. U.S.A.80, 5181–5184.

    Google Scholar 

  80. Applebaum D (1972) Ph.D. Thesis, Univ. of Washington, Seattle, Washington.

  81. Applebaum D, Sabo DL, Fischer EH & Morris DR (1975) Biochemistry14, 3675–3681.

    Google Scholar 

  82. Applebaum D, Dunlap JC & Morris DR (1977) Biochemistry16, 1580–1584.

    Google Scholar 

  83. Sabo DL, Boeker EA, Byers B, Waron H & Fischer EH (1974) Biochemistry13, 662–669.

    Google Scholar 

  84. Wu WH & Morris DR (1973) J. Biol. Chem.248, 1687–1695.

    Google Scholar 

  85. Leifer Z & Maas WK (1973) Fed. Proc.32, 659.

    Google Scholar 

  86. Cohn MS, Tabor CW & Tabor H (1978) J. Bacteriol.134, 208–213.

    Google Scholar 

  87. Huang SC, Kyriakidis DA, Rinehart CA & Canellakis ES (1984) Biochem. Pharm.33, 1383–1386.

    Google Scholar 

  88. von Hippel PH, Kowalczykowski SC, Lonberg N, Newport JW, Leland PS, Stormo GD & Gold L (1982) J. Mol. Biol.162, 795–818.

    Google Scholar 

  89. Champoux JJ (1978) Ann. Rev. Biochem.47, 449–479.

    Google Scholar 

  90. Kowalczykowski SC, Bear DG & von Hippel PH (1981) The Enzymes (Boyer P, ed),121, 373–444.

  91. Williams KR & Konigsberg W (1981) Gene Amplification and Analysis, 2, Structured Analysis of Nucleic Acids (Chirikjian JG & Papas TS, eds), Elsevier/North Holland.

  92. Panagiotidis CA & Canellakis ES (1984) J. Biol. Chem.259, 15025–15027.

    Google Scholar 

  93. Wittman-Liebold B, Marzinzig E & Lehmann A (1976) FEBS Lett.68, 110–114.

    Google Scholar 

  94. Chen R (1976) Hoppe-Seyler's Z. Physiol. Chem.357, 873–886.

    Google Scholar 

  95. Dijk J & Littlechild J (1979) Methods Enzymol.54, 481–502.

    Google Scholar 

  96. Zimmerman RA (1979) Meth. Enzymol.54 551–583.

    Google Scholar 

  97. Holtta E, Janne J & Pispa J (1972) Biochem. Biophys. Res. Comm.47, 1165–1171.

    Google Scholar 

  98. Holtta E, Janne J & Pispa J (1973) Biochem. Biophys. Res. Comm.47, 1165–1169.

    Google Scholar 

  99. Fiil NP, Williumsen BM, Friesen JD & von Meyenburg K (1977) Molec. Gen. Genet.150, 87–101.

    Google Scholar 

  100. Kari C, Torok I & Travers A (1977) Molec. Gen. Genet.150, 249–255.

    Google Scholar 

  101. Jelenc PC & Kurland CG (1979) Proc. Natl. Acad. Sci. U.S.A.76, 3174–3178.

    Google Scholar 

  102. Kurland CG (1982) Cell28, 201–202.

    Google Scholar 

  103. Sakai TT & Cohen SS (1976) Proc. Natl. Acad. Sci. U.S.A.73, 3502–3506.

    Google Scholar 

  104. Cozzone AJ (1981) Trends In Biochemical Sciences6, 108–110.

    Google Scholar 

  105. Cooper HJL, Park MH, Folk JE, Safer B & Braverman R (1983) Proc. Natl. Acad. Sci. U.S.A.80, 1854–1857.

    Google Scholar 

  106. Mitsui K, Igarashi K, Kakegawa T & Hirose S (1984) Biochemistry23, 2679–2683.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canellakis, E.S., Kyriakidis, D.A., Rinehart, C.A. et al. Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth. Biosci Rep 5, 189–204 (1985). https://doi.org/10.1007/BF01119588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01119588

Keywords

Navigation