Skip to main content
Log in

Calculation of cohesive energy of Ti4O7

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The cohesive energy of Ti4O7not be determined experimentally by a Born-Haber cycle analysis because the heat of formation of this compound, one of the energies associated with steps involved in the cycle, has not been obtained experimentally. Therefore, this paper reports the calculation of the cohesive energy of Ti4O7 based on the real structure observed at 120 K by X-ray diffraction. The cohesive energy consists of the Madelung energy calculated by Ewald's method, the repulsive energy, van der Waals's energy, the zero-point energy and the energy associated with bipolarons formed in Ti4O7 at temperatures below 150 K. The calculated value for the cohesive energy is −390.26 eV per Ti4O7 “molecule”. This value is found to be nearly equal to the upper limit of the cohesive energy of the Ti4O7 “molecule” which is approximately estimated by extrapolating the experimental results for the heats of formation of TiO2 and Ti3O5 in Born-Haber cycle analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Bursill andB. G. Hyde, in “Progress in Solid State Chemistry”, Vol. 7 (Pergamon, Oxford, 1972) p. 117.

    Google Scholar 

  2. J. S. Anderson andR. J. D. Tilley, in “Surface and Defects Properties of Solids”, Vol. 3. (The Chemical Society, London, 1974) p. 1.

    Google Scholar 

  3. M. Marezio, P. D. Dernier, D. B. McWhan andJ. P. Remeika,Mater. Res. Bull. 5 (1970) 1015.

    Google Scholar 

  4. M. Marezio andP. D. Dernier,J. Solid State Chem. 3 (1971) 340.

    Google Scholar 

  5. M. Marezio, D. B. McWhan, P. D. Dernier andJ. D. Remeika,ibid. 6 (1973) 213.

    Google Scholar 

  6. Y. LePage andP. Strobel,ibid. 43 (1982) 314.

    Google Scholar 

  7. Idem, ibid. 44 (1982) 273.

    Google Scholar 

  8. S. Lakkis,C. Schlenker, B. K. Chakraverty, R. Buder andM. Marezio,Phys. Rev. B14 (1976) 1429.

    Google Scholar 

  9. B. K. Chakraverty andC. Schlenker,J. Phys. (Paris) 37 (1976) Suppliment 10, C4–353.

    Google Scholar 

  10. P. H. Wackman,W. M. Hirthe andR. E. Frounfelker,J. Phys. Chem. Solids 28 (1967) 1525.

    Google Scholar 

  11. H. Sawatari, E. Iguchi andR. J. D. Tilley,ibid. 43 (1982) 1147.

    Google Scholar 

  12. K. Aizawa, E. Iguchi andR. J. D. Tilley,Proc. R. Soc. A394 (1984) 299.

    Google Scholar 

  13. Y. Shimizu andEaguchi,Phys. Rev. B 17 (1978) 2505.

    Google Scholar 

  14. S. Andersson andL. Jahnberg,Ark. Kemi. 21 (1961) 413.

    Google Scholar 

  15. P. P. Ewald,Ann. Phisik 64 (1921) 253.

    Google Scholar 

  16. W. Van Gool andA. G. Piken,J. Mater. Sci. 4 (1969) 95.

    Google Scholar 

  17. C. R. A. Catlow andB. E. F. Fender,J. Phys. C, Solid State Phys. 8 (1975) 3267.

    Google Scholar 

  18. R. D. Shannon andG. T. Prewitt,Acta Crystallogr. B 25 (1969) 925.

    Google Scholar 

  19. C. Kittel, in “Introduction to Solid State Physics”, 4th Edn. (Wiley, New York, 1971) p. 215.

    Google Scholar 

  20. F. D. Rossini,P. D. Wagman, W. H. Evans S. Levine andC. Tafte,Res. Nat. Bur. Stand. Circular 500 (1952).

  21. M. W. Zemansky, in “American Institute of Physics Handbook”, 3rd Edn. (McGraw-Hill, New York, 1972) pp. 4–245.

    Google Scholar 

  22. D. R. Stull (ed.), “JANAF Thermochemical Tables” (Dow-Chemical Cmpany, Midland, 1965) p. 1.

    Google Scholar 

  23. T. L. Cottrell, in “The Strength of Chemical Bonds” (Academic Press, New York, London, 1954) p. 1.

    Google Scholar 

  24. T. Cherman,Chem. Rev. 10 (1932) 93.

    Google Scholar 

  25. M. F. Ladd andW. H. Lee,Acta Crystallogr. 13 (1960) 959.

    Google Scholar 

  26. M. L. Huggins andY. Sakamoto,J. Phys. Soc. Jpn. 21 (1957) 241.

    Google Scholar 

  27. R. C. Wehst andM. J. Astle (Ed.), in “CRC Handbook of Chemistry and Physics”, 63rd Edn. (CRC Press, Boca Raton, 1982-1983) p. E-64.

    Google Scholar 

  28. R. R. Merrit, B. G. Hyde, L. A. Bursill andD. K. Philip,Phil. Trans. R. Soc. A274 (1973) 627. (1977) Supplement 12, C7-32.

    Google Scholar 

  29. C. Picard andP. Gerdanian,J. Solid State Chem. 14 (1975) 66.

    Google Scholar 

  30. R. James andC. R. A. Catlow,J. Phys. Paris 38 (1977) Supplement 12, C7–32.

    Google Scholar 

  31. E. Iguchi, H. Sawatari andR. J. D. Tilley,Phys. Status Solidi B 107 (1981) K63.

    Google Scholar 

  32. F. A. Grant,Rev. Mod. Phys. 31 (1959) 646.

    Google Scholar 

  33. I. J. Fritz,J. Phys. Chem. Solids 35 (1974) 817.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iguchi, E., Matsushima, F. Calculation of cohesive energy of Ti4O7 . J Mater Sci 21, 1046–1050 (1986). https://doi.org/10.1007/BF01117393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117393

Keywords

Navigation