Skip to main content
Log in

A unified matrix hypothesis of DNA-directed morphogenesis, protodynamism and growth control

  • Hypothesis
  • Published:
Bioscience Reports

Abstract

A theoretical concept is proposed, in order to explain some enigmatic aspects of cellular and molecular biology of eukaryotic organisms. Among these are the C-value paradox of DNA redundancy, the correlation of DNA content and cell size, the disruption of genes at DNA level, the “Chromosome field” data of Lima de Faria (Hereditas 93∶1, 1980), the “quantal mitosis” proposition of Holtzeret al. (Curr. Top. Dev. Biol. 7∶229 1972), the inheritance of morphological patterns, the relations of DNA and chromosome organisation to cellular structure and function, the molecular basis of speciation, etc. The basic proposition of the “Unified Matrix Hypothesis” is that the nuclear DNA has a direct morphogenic function, in addition to its coding function in protein synthesis. This additional genetic information is thought to be largely contained in the non-protein coding transcribed DNA, and in the untranscribed part of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananiev, E. V., Gvozdev, V. A., Illyin, Y. V., Tchurikov, N. A. and Georgiev, G. P. (1978) Reiterated genes with varying location in intercalary heterochromatin regions of Drosophila melanogaster polytene chromosomes.Chromosoma 70:1.

    Google Scholar 

  • Ananiev, E. V., Barsky, V. E., Illyin, Y. V. and Tchurikov, N. A., (1981) Localization of nucleoli in Drosophila melanogaster polytene chromosomes.Chromosoma 81:619.

    Google Scholar 

  • Bennett, M. D. (1982) Nucleotypic basis of the spatial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variations. In:Genome Evolution (G. A. Dower and R. B. Flavell, Eds.), Academic Press, pp. 239.

  • Berezney, R. (1984) Organisation and functions of the nuclear matrix. In:Chromosomal Non-histone Proteins, vol. 4 (L. S. Hnlica, Ed., CRC Press): 119.

  • Berezney, R. (1985) The nuclear matrix model and DNA replication: an in vitro approach for dissecting the role of structure in chromatin function.UCLA Symp. Mol. Cell. Biol. 26:99–118.

    Google Scholar 

  • Bernardi, G. (1979) The petite mutative in yeast.Trends Biochem. 4:197–201.

    Google Scholar 

  • Bhave, M., Lagu, M., Gadre, S. R. and Ranjekar, P. K. (1984) Molecular analysis is of cucurbitaceae genomes 2. Comparison of high resolution thermal denaturation profiles of DNA in 7 plant species.Indian J. Biochem. Biophys. 21:81–84.

    Google Scholar 

  • Bloom, K. S., Fitzgerald, Hayes, M. and Carbon, J. (1982) Structural analysis and sequence organization of yeast centromeres.Cold Spring Harbor Symp. Quant. Biol. 47:1175.

    Google Scholar 

  • Bradley, A., Evans, M., Kaufman, M. H. and Robertson, E. (1984) Formation of germ-line chimeras from embryo-derived teratocarcinoma cell lines.Nature 309:255.

    Google Scholar 

  • Broders, F. and Scherrer, K. (1987) Transcription of the alpha globin gene domain in normal and AEV-transformed chicken erythroblasts: Mapping of giant globin-specific RNA including embroyonic and adult genes.Mol. Gen. Genetics 209:210–220.

    Google Scholar 

  • Capanna, E., Gropp, A., Winking, H., Noack, G. and Civitelli, M-V. (1976) Robertsonian metacentrics in the mouse.Chromosoma 58:341–353.

    Google Scholar 

  • Carbon, J. and Clarke, L. (1984) Structural and functional analysis of a yeast centromere (CEN 3). In: “Higher order structure in the nucleus” (P. R. Cook and R. A. Laskey ed.)J. Cell Sci., suppl. 1:43.

  • Cavalier-Smith, T. (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA c-value paradox.J. Cell. Sci. 34:247–278.

    Google Scholar 

  • Chebloune, Y. and Verdier, Y. (1983) The delta-beta-crossing-over site in the fusion gene of the Lepore-Boston disease might be localized in a preferential recombination region.Acta Haem. 69:294–302.

    Google Scholar 

  • Chandley, A. C., Jones, R. C., Dott, H. M., Allen, W. R. and Short, R. V. (1974) Meiosis in interspecific equine hybrids. I. The male mule (Equus Asimus XE. Cabattus XE Asinus).Cytogenet. Cell. Genet. 13:330–341.

    Google Scholar 

  • Colman, D. R., Kreibich, G., Fey, A. B. and Sabatini, D. D. (1982) Synthesis and incorporation of myelin polypeptides into CNS myelin.J. Cell Biol. 95:598–608.

    Google Scholar 

  • Commoner, B. (1964) Roles of deoxyribonucleic acid in inheritance.Nature 202:960–968.

    Google Scholar 

  • Cook, P. R., Brazell, I. A. and Jost, E., 1976, Characterization of nuclear structures containing superhelical DNA.J. Cell. Sci.,22:303.

    Google Scholar 

  • Crick, F. H. C. and Lawrence, P. A. (1975) Compartments and polyclones in insect development.Science 189:340–347.

    Google Scholar 

  • Doolittle, W. F. (1982) Selfish DNA after fourteen months. In: “Genome Evolution” (G. A. Dower and B. Flavell, ed., Academic Press): 3.

  • Du Praw, E. J. (1970). In: “DNA and Chromosomes” (Holt, Rinehart and Winston, Inc.): 186.

  • Earnshaw, W. C. and Laemmli, U. K., (1983) Architecture of metaphase, chromosomes and chromosome scaffolds.J. Cell Biol. 96:84.

    Google Scholar 

  • Ellison, J. R. and Howard, G. C. (1981) Non-random position of the A-T rich DNA sequences in early embryos of Drosophila virilis.Chromosoma 83:555.

    Google Scholar 

  • Fey, E. G., Capco, D. G., Krochmalnic, G. and Penman, S. (1984) Epithelial structure revealed by chemical dissection and unembedded electron microscopy.J. Cell. Biol. 99:203s–208s.

    Google Scholar 

  • Fey, E. G., Krochmalnik, G. and Penman, S. (1986) The non-chromatin, substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy.J. Cell. Biol 102:1654–1665.

    Google Scholar 

  • Grossi de Sa, M-F., Martins de Sa, C., Harper, F., Huesca, M. and Scherrer, K. (1988) The association of prosome with some of the intermediate filament networks of the animal cells.J. Cell Biol. 107:1517–1530.

    Google Scholar 

  • Gruenbaum, Y., Hochstrasser, M., Mathog, D., Saumweber, H., Agard., D. A., and Seda, J. W. (1984) Spatial organisation of the Drosophila nucleus: a three-dimensional cytogenetic study. In: “Higher order structure in the nucleus” (P. R. Cook and R. A. Laskey ed.),J. Cell. Sci., suppl. 1: 223.

  • Gurdon, J. B. (1975) “Control of gene expression in animal development” (Harvard Univ. Press, Cambridge).

    Google Scholar 

  • Guyaux, M., Cornelissen, A., Pays, E., Steinert, M. and Borst, P. (1985) Trypanosoma-brucei a surface antigen messenger RNA is discontinuously transcribed from 2 distinct chromosomes.EMBO J. 4:995–998.

    Google Scholar 

  • Harris, H. (1972) “Cells, and cytoplasm” (3rd ed., Clarendon Press, Oxford).

    Google Scholar 

  • Hens, L., Baumann, H., Cremer, T., Sutter, A., Cornelis, J. J. and Cremer, C. (1983) Immunocytochemical localization of chromatin regions UV-micro-irradiated in S phase or Anaphase.Exptl. Cell Res. 149:257.

    Google Scholar 

  • Holtzer, H., Weintraub, H., Mayne, R. and Mochan, B. (1972) The cell cycle, cell lineages, and cell differentiation. In: “Curr. Top. in Develop. Biol.” vol. 7 (A. A. Moscona and A. Monroy, ed., Academic Press): 229

  • Johri, M. M. (1978). In: “Frontiers of Plant Tissue Culture” (T. A. Thorpe ed., Unv. Calgary Bookstore): p. 27.

  • Judd, B. H., Shen, M. W. and Kaufman, T. C. (1972) The anatomy and function of a segment of the X chromosome of Drosophila Melanogaster.Genetics 71:139–156.

    Google Scholar 

  • Kandjian, E. W., Loche, M., Darlix, J-L., Cramer, R., Turler, H. and Weil, R. (1982) Simian virus 40 large tumor antigen: A “RNA, binding protein?”Proc. Natl. Acad. Sci. USA 79: 1139–1143.

    Google Scholar 

  • Kaufman, B. P., McDonald, M. R., Gay, H., Wilson, K., Wyman, R., Okuda, N. (1948) organisation of the chromosome.Carnegie Inst. Year Book 47:144–155.

    Google Scholar 

  • Klein, G. (1981) The role of gene dosage and genetic transpositions in carcinogenesis.Nature 294:313.

    Google Scholar 

  • Kuhlmann, W. D., Bouteille, M. and Avrameas, S. (1975) Correlation of cell division and specific protein production during the course of lymphoid cell differentiation.Exptl. Cell Res. 96:335–343.

    Google Scholar 

  • Lagowski, J. M., Yu, M. Y., Forrest, H. S. and Laird, C. D. (1973) Dispersity of repeat DNA sequences in Oncopeltus fasicatus, an organism with diffuse centromeres.Chromosoma 43:349–373.

    Google Scholar 

  • Lawrence, P. A. and Struhl, G. (1982) Further studies of the engrailed phenotype in DrosophilaEMBO J 1:827–833.

    Google Scholar 

  • Lawrence, J. B. and Singer, R. H. (1986) Intracellular localization of messenger RNAs for cytoskeletal proteins.Cell 45:407.

    Google Scholar 

  • Lifschytz, E., Hareven, D., Azriel, A. and Brodsly, H. (1983) DNA clones and RNA transcripts of four lampbrush loops from the Y chromosome of Drosophila Hydei.Cell 32: 191–199.

    Google Scholar 

  • Lima de Faria, A. (1979) Prediction of gene location and classification of genes according to the chromosome field. In: “Specific eukaryotic genes” Alfred Benzon Symposium, 13 (Munksgaard, 1979): 25–38.

  • Lima de Faria, A. (1980) Classification of genes, rearrangements and chromosomes according to the chromosome field.Hereditas 93:1–46.

    Google Scholar 

  • Lima de Faria, A. (1983) Experimental demonstration of interactions between chromosomes. Interchromosomal effects. In: “Molecular evolution and organisation, of the chromosomes”, (Elsevier, Amsterdam) p. 641.

    Google Scholar 

  • manolova, Y., Manolov, G., Kieler, J., Levan, A. and Klein, G. (1979) Genesis of the 140-plus marker in Burkitt's lymphoma.Hereditas 90:5–10.

    Google Scholar 

  • Manuelidis, L. (1982) Repeated DNA sequences and nuclear structure. In: “Genome Evolution” (G. A. Dower and R. B. Flavell, ed., Academic Press_: 263.

  • Manuelidis, L. (1984) Different central nervous system cell types display distinct and non-random arrangements of satellite DNA sequences.Proc. Natl. Acad. Sci. USA.81:3123.

    Google Scholar 

  • Manuelidis, L. (1985) Indications of centromere movement during interphase and differentiation.Am. New York Acad. Sci. p. 205–222.

  • Mariman, E. C., Van Eekelen, C. A., Reinders, R. J., Berns, A. J. and Van Venrooij, W. J. (1982), Adenoviral heterogeneous nuclear RNA is associated with the host nuclear matrix during splicing.J. Mol. Biol. 154:103.

    Google Scholar 

  • Martins de Sa, C., Grossi de Sa, M-F., Akhayat, O., Broders, F., Scherrer, K., Horsch, A. and Schmid, H-P (1986) Prosomes: Ubiquity and inter-species structural variation.J. Mol. Biol. 187:479–493.

    Google Scholar 

  • McClintock, B. (1984) The significance of responses of the genome to challenge.Science 226: 792.

    Google Scholar 

  • Maundrell, K., Maxwell, S., Puvion, E. and Scherrer, K. (1981) The nuclear matrix of duck erythroblasts is associated with globin mRNA coding sequences but not with the major proteins of 40S nuclear RNP.Exptl. Cell Res. 136:435–445.

    Google Scholar 

  • Maundrell, K., Imaizumi-Scherrer, M-T., Maxwell, S., Civelli, O. and Scherrer, K. (1983) Messenger RNA for the 73.000-dalton poly(A)-binding protein occurs as translationally repressed mRNP in duck reticulocytes.J. Biol. Chem. 258:1387–1390.

    Google Scholar 

  • Maxwell, S., Maundrell, K., Puvion-Dutilleul F. and Scherrer, K. (1981) Distribution of low-molecular-weight RNAs in avian erythroblast nuclear ribonucleoprotein complexes associated with pre-messenger RNA.Eur. J. Biochem. 113:233–247

    Google Scholar 

  • Mintz, B. and Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells.Proc. Natl. Acad. Sci. USA 72:3585.

    Google Scholar 

  • Mirkovitch, J., Mirault, M-E. and Laemmli, U. K. (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear, scaffold.Cell 39:223–232.

    Google Scholar 

  • Moreau, J., Matyash-Smirniaguina, L. and Scherrer, K. (1981) Systematic punctuation of eukaryotic DNA by AT-rich sequences.Proc. Natl. Acad. Sci. USA,78:1341–1345.

    Google Scholar 

  • Moreau, J., Marcaud, L., Maschat, F., Kejzlarova-Lepesant, J., Lepesant, J-A. and Scherrer, K. (1982) AT-rich linkers define functional domains in eukaryotic DNA.Nature 295:260–262.

    Google Scholar 

  • Odartschenko, N. and Keneklis, T. (1973) Localization of paternal DNA in interphase nuclei of mouse eggs during early cleavageNature 241:528–529.

    Google Scholar 

  • Ohno, S. (1972) An argument for the genetic simplicity of man and other mammals.J. Hum. Evol. 1:651–662.

    Google Scholar 

  • Pal, J. K., Grossi de Sa, M.-F., Gounon, P. and Scherrer, K. (1988) Distribution of prosome antigens changes as a function of embryonic development and tissue-type differentiation in Pleurodeles Waltl.J. Cell Sci.,90:555–567.

    Google Scholar 

  • Paulson, J. R. and Laemmli, U. K. (1977) The structure of histone depleted metaphase chromosomes.Cell 12:817–828.

    Google Scholar 

  • Ranjekar, P. K., Pallota, D. and Lafontaine, J. G. (1978) Analysis of plant genomes. V. Comparative study of molecular properties of DNAs of seven allium species.Biochem. Gen. 16:957.

    Google Scholar 

  • Razin, S., Rzeszowska-Wolny, J., Moreau, J. and Scherrer, K. (1985) Mapping of permanent and transcription-related matrix attachment sites in the alpha globin gene domain of avian erythroblasts and erythrocytes.Molekularnaya Biologia 19:456–466.

    Google Scholar 

  • Razin, S., Rzeszoska-Wolny, J., Moreau, J. and Scherrer, K. (1985) Localization of sites of DNA attachment to the nuclear matrix in the domain of the chicken α-globin genes in functionally active and inactive nuclei.Mol. Biol. 19:376–385.

    Google Scholar 

  • Rees, H., Jenkins, G., Seal, A. G. and Hitchinson, J. (1982) Assays of the phenotypic effects of changes in DNA amounts. In: “Genome Evolution” (C. A. Dower and R. B. Flavell ed., Academic Press): 287.

  • Rzeszowska-Wolny, J., Razin, S., Puvion, E., Moreau, J. and Scherrer, K. (1988) Isolation and characterisation of stable matrix nuclear preparation from avian erythroblasts domain of avian erythroblasts and erythrocytes.Biology of the Cell 64:13–22.

    Google Scholar 

  • Rio, D. C. and Tjian, R. (1983) SV40 T Antigen binding site mutations that affect autoregulation.Cell 32:1227–1240.

    Google Scholar 

  • Robinson, S. I., Nelkin, B. D. and Vogelstein, B. (1982) The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells.Cell 28:99.

    Google Scholar 

  • Rosbash, M., Ford, P. J. and Bishop, J. (1974) Analysis of the c-value paradox by molecular hybridization.Proc. Natl. Acad. Sci. USA 71:3746–3750.

    Google Scholar 

  • Scherrer, K. (1966) Les mécanismes moléculaires de la synthèse des protéines cellulaires.Acta. Soc. Helv. Sci. Nat. 146:75–92.

    Google Scholar 

  • Scherrer, K. (1980) Cascade Regulation: a model for integrative control of gene expression in eukaryotic cells. In: “Eukaryotic Gene Regulation” (Kolodny, ed. CRC Press), vol. I: 57–129.

  • Scherrer, K. (1985) The matrix hypothesis of DNA directed morphogenesis, protodynamism and growth control.Proceedings of the 16th FEBS Congress, Moscow 1984, VNU Science Press (Utrecht 1985), Part B, pp. 105–122.

    Google Scholar 

  • Scherrer, K. and Marcaud, L. (1968) Messenger RNA in avian erythroblasts at the transcriptional and translational levels and the problem of regulation, in animal cells.J. Cell. Physiol. 72:181–212.

    Google Scholar 

  • Scherrer, K. and Moreau, J. (1985) About the significance of AT-rich DNA segments in eukaryotic genome organization and function. Proceedings of the 16th FEBS Congress, Moscow 1984 (VNU Science Press, Utrecht 1985):105–122.

    Google Scholar 

  • Seth, P. K., de Boer, L. E. M., Saxena, M. B. and Seth, S. (1976) Comparison of human and non-human primate chromosomes using the fluorescent benzimidazole and other banding techniques.Chromosomes Today Vol. 5 (Pearson and Lewis, ed. (Wiley New York: 315–322.

    Google Scholar 

  • Smith, H. C. and Berezney, R. (1980) DNA polymerase is tightly bound to the nuclear matrix of actively replicating liver.Biochem. Biophys. Res. Commun. 97:1541.

    Google Scholar 

  • Sommerville, J. (1977) Gene activity in the lampbrush chromosomes of amphibian oocytes.Int. Rev. Biochem. 15:79–156.

    Google Scholar 

  • Stewart, W. D. P. (1985) Differentiating cyanobacteria rearrange, their NIF genes.Nature 314:404.

    Google Scholar 

  • Thomas, C. A. (1971) The genetic organisation of chromosome, 3027.Acta Rev. Genet. 5:237.

    Google Scholar 

  • Vincent, A., Goldenberg, S., Standart, N., Civelli, O., Imaizumi-Scherrer, M.-T., Maundrell, K. and Scherrer, K. (1981) Potential role of mRNP proteins in cytoplasmic control of gene expression in duck erythroblasts.Mol. Biol. Rep. 7:71–81.

    Google Scholar 

  • Vincent, A., Akhayat, O. and Scherrer, K. (1983) Differential repression of specific mRNA in erythoroblast cytoplasm: a possible role for free mRNP proteins.EMBO J. 2:1869–1876.

    Google Scholar 

  • Vogelstein, B., Pardoll, D. M., Coffey, D. S. (1980) Supercoiled loops and eucaryotic DNA replication.Cell 12:817.

    Google Scholar 

  • Yamada, T., Dumont, J. N., Moret, R. and Brun, J. P. (1978) Autophagy in dedifferentiating newt iris epithelial cells in vitro.Differentiation 11:133.

    Google Scholar 

  • Yaniv, N. (1984) Regulation of eukaryotic gene expression by transcribing proteins and cis acting DNA elements.Biol. Cell 50:203–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

“In this world, seeds of different kinds, sown at the proper time in the land, even in one field, come forth (each) according to its kind”.

In the biological sense, the term “Matrix” is used here to signify the integrity of the cell's fibrous networks in nucleus and cytoplasm, during interphase and metaphase. In the philosophical sense, “Matrix Hypothesis” integrates also the etymological meaning of the term, which stems from “mater” (i.e. origin), and means also a lattice within a frame of coordinates, or else: “Something (as a surrounding or pervading substance or element) within which something else originates or takes form or develops” (cf. Webster's Intern. Dict.).—The term “Protodynamism” was defined earlier (Scherrer, 1966) as meaning the integrity of theorganised movements of the cellular components, excluding mere diffusion.

A preliminary version of this assay was published previously (cf. Scherrer, 1985).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherrer, K. A unified matrix hypothesis of DNA-directed morphogenesis, protodynamism and growth control. Biosci Rep 9, 157–188 (1989). https://doi.org/10.1007/BF01115994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01115994

Key Words

Navigation