Skip to main content
Log in

Polarized basis sets for high-level-correlated calculations of molecular electric properties

VII. Elements of the group Ib: Cu, Ag, Au

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The first-order polarized basis sets PolMe are generated for elements (Me=Cu, Ag, Au) of group Ib of the periodic table by using the basis set polarization method developed in earlier papers. The performance of these basis sets is extensively tested in calculations of atomic dipole polarizabilities with particular attention given to the evaluation of the electron correlation and relativistic contributions. The extension by theg-type polarization functions (PolMe-g sets) is devised for use in accurate calculations of atomic and molecular electric properties. The (negative) electron correlation contribution to dipole polarizabilities of all elements of group Ib, as calculated at the level of the spin adapted coupled cluster method with single and double excitations and non-iterative corrections for the contribution of the T3 clusters (SA CCSD(T)), remains at the same level relative to the ROHF data. The pure relativistic correction to the ROHF results, evaluated within the quasirelativistic approximation involving the mass-velocity and Darwin corrections, is negative and rapidly increases with increase of the nuclear charge. Its large negative value is, for heavier systems, partly compensated by a positive contribution from the mixed relativistic-correlation terms. Our relativistically corrected SA CCSD(T) calculations predict the following values of the dipole polarizability in the coinage metal series: 46, 51, and 29 a.u., for Cu, Ag, and Au. The present results for Cu and Ag agree well with recent pseudopotential calculations by Schwerdtfeger and Bowmaker. However, for Au our result is by about 6 a.u. lower than that obtained by using 19-electron relativistic potentials. Several possible reasons for this discrepancy are discussed. The PolMe and PolMe-g basis sets are also used to calculate electric dipole polarizabilities of the singly positive ions of group Ib elements. The results obtained in the quasirelativistic CCSD(T) approximation are 6.6, 9.2, and 11.8 a.u. for Cu+, Ag+, and Au+, respectively. These values follow the pattern expected for the series of ions whose polarizability is dominated by the next-to-valenced shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckingham AD (1967) Adv Chem Phys 12:107; Buckingham AD (1978) In: Pullman B (ed) Intermolecular interactions. From diatomics to polymers. Wiley, New York 1:1

    Google Scholar 

  2. Chałasiński G, Gutowski M (1988) Chem Rev 88:943

    Google Scholar 

  3. Duijneveldt-van der Rijdt JGCM, van Duijneveldt FB (1982) J Mol Struct (Theochem) 89:185

    Google Scholar 

  4. Werner H-J, Meyer W (1976) Phys Rev 13:13; Werner H-J, Meyer W (1976) Mol Phys 31:855

    Google Scholar 

  5. Sadlej AJ (1988) Coll Czech Chem Commun 53:1995, Part I of this series

    Google Scholar 

  6. Sadlej AJ (1991) Theor Chim Acta 79:123, Part II of this series

    Google Scholar 

  7. Sadlej AJ, Urban M (1991) J Mol Struct (Theochem) 234:147, Part III of this series

    Google Scholar 

  8. Sadlej AJ (1991) Theor Chim Acta 81:45, Part IV of this series

    Google Scholar 

  9. Sadlej AJ (1991) Theor Chim Acta 81:339, Part V of this series

    Google Scholar 

  10. Kellö V and Sadlej AJ (1992) Theor Chim Acta 83:351, Part VI of this series

    Google Scholar 

  11. Kellö V, Sadlej AJ (1995) Theor Chim Acta (in press), Part VIII of this series

  12. Kellö V, Sadlej AJ (1995) Theor Chim Acta in press), (1995) J Chem Phys (in press)

  13. Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Google Scholar 

  14. Andersson K, Malmqvist P-Å, Roos B (1992) J Chem Phys 96:1218

    Google Scholar 

  15. Roos BO (1987) Adv Chem Phys 69:399

    Google Scholar 

  16. Urban M, Černušák I, Kellö V, Noga J (1987) In: Wilson S (ed) Methods in computational chemistry, vol 1. Plenum Press, NY, p 117, and references therein

    Google Scholar 

  17. Neogrády P, Urban M, Hubač I (1992) J Chem Phys 97:5074

    Google Scholar 

  18. Neogrády P, Urban M, Hubač I (1994) J Chem Phys 100:3706

    Google Scholar 

  19. Neogrády P, Urban M (1995) Int J Quantum Chem (in press) and references therein

  20. Kellö V, Sadlej AJ (1990) J Chem Phys 93:8112

    Google Scholar 

  21. Sadlej AJ, Urban M (1991) Chem Phys Lett 176:293

    Google Scholar 

  22. Andersson K, Sadlej AJ (1992) Phys Rev A 46:2356

    PubMed  Google Scholar 

  23. Adamowicz L, Bartlett RJ (1987) J Chem Phys 86:6314; Adamowicz L, Bartlett RJ, Sadlej AJ (1988) J Chem Phys 88:5749

    Google Scholar 

  24. Jensen HJA, Jørgensen P, Ågren H, Olsen J (1988) J Chem Phys 88:3834; 88:5354

    Google Scholar 

  25. Bartlett RJ (1989) J Phys Chem 90:4356

    Google Scholar 

  26. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Google Scholar 

  27. Lee TJ, Rendell AP, Taylor PR (1990) J Phys Chem 94:5463

    Google Scholar 

  28. Rittby M, Bartlett RJ (1988) J Phys Chem 92:3033; Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718

    Google Scholar 

  29. Watts JD, Urban M, Bartlett RJ (1995) Theor Chim Acta 90:341

    Google Scholar 

  30. Pyykkö P (1988) Chem Rev 88:563

    Google Scholar 

  31. Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010; Martin RL (1983) J Phys Chem 87:750

    Google Scholar 

  32. Sadlej AJ, Urban M, Gropen O (1991) Phys Rev A 44:5547

    PubMed  Google Scholar 

  33. Kellö V, Sadlej AJ, Faegri Jr K (1993) Phys Rev A 47:1715

    PubMed  Google Scholar 

  34. Sadlej AJ (1991) J Chem Phys 95:2614

    Google Scholar 

  35. Andersson K, Blomberg MRA, Fülscher M, Kellö V, Lindh R, Malmqvist P-Å, Noga J, Olsen J, Roos BO, Sadlej AJ, Siegbahn PEM, Urban M, Widmark P-O (1991) MOLCAS system of quantum chemistry programs, release 2. Theoretical Chemistry, University of Lund, Lund Sweden and IBM Sweden

  36. Lee TJ, Rendell AP, Rice JE (1991) TITAN, a set of electronic structure programs included in the MOLCAS system.

  37. Huzinaga S (1971) Technical Report, Department of Chemistry, University of Alberta, Edmonton, Canada

    Google Scholar 

  38. Gropen O (1987) J Comp Chem 7:982

    Google Scholar 

  39. Woliński K, Sadlej AJ, Karlström (1991) Mol Phys 72:425

    Google Scholar 

  40. Reffenetti RC (1973) J Chem Phys 58:4452

    Google Scholar 

  41. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070

    Google Scholar 

  42. Widmark P-O, Malmquist P-Å, Roos BO (1990) Theor Chim Acta 77:291

    Google Scholar 

  43. Widmark P-O, Person JB, Roos BO (1991) Theor Chim Acta 79:419

    Google Scholar 

  44. Müller W, Fleisch J, Meyer W (1984) J Chem Phys 80:3297

    Google Scholar 

  45. Balasubramanian K, Pitzer KS (1987) Adv Chem Phys 67:287 and references therein; see also Ref. [53]

    Google Scholar 

  46. Kutzelnigg W (1989) Z Phys D 11:15; (1990) 15:27

    Google Scholar 

  47. Andersson K, Borowski P, Fowler PW, Malmqvist P-Å, Roos BO, Sadlej AJ (1992) Chem Phys Lett 190:367

    Google Scholar 

  48. Schwerdtfeger P, Bowmaker GA (1994) J Chem Phys 100:4487

    Google Scholar 

  49. Teachout RR, Pack RT (1971) Atomic Data 3:195

    Google Scholar 

  50. Miller TM, Bederson B (1988) Adv At Mol Phys 25:37

    Google Scholar 

  51. Kirkwood JG (1932) Phys Z 33:57; Pople JA, Schofield P (1957) Phil Mag 2:591

    Google Scholar 

  52. Sadlej AJ (1980) Mol Phys 40:509

    Google Scholar 

  53. Dolg M, Wedig H, Stoll H, Preuss H (1987) J Chem Phys 88:866; Schwerdtfeger P, Dolg M, Schwarz WHE, Bowmaker GA, Boyd PDW (1989) 91:1762

    Google Scholar 

  54. Schwerdtfeger P, Li J, Pyykkö P (1994) Theor Chim Acta 87:313

    Google Scholar 

  55. Desclaux JP, Laaksonen L, Pyykkö P (1981) J Phys B 14:419

    Google Scholar 

  56. Faegri Jr K, Saue T, Sadlej AJ (to be published)

  57. Fowler PW, Sadlej AJ (1991) Mol Phys 73:43

    Google Scholar 

  58. Neogrády P, Urban M, Sadlej AJ (1995) J Mol Struct (Theochem) 332:197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neogrády, P., Kellö, V., Urban, M. et al. Polarized basis sets for high-level-correlated calculations of molecular electric properties. Theoret. Chim. Acta 93, 101–129 (1996). https://doi.org/10.1007/BF01113551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113551

Key words

Navigation