Skip to main content
Log in

Accurate electrical and spectroscopic properties ofX 1Σ+ BeO from coupled-cluster methods

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

This paper reports a series of coupled-cluster (CC) calculations through CCSDT on the theoretically challenging ground state of the BeO molecule. Along with CC methods, quadratic configuration interaction (QCI) approximations to CC theory have been used (QCISD and QCISD(T)), which show several dramatic failings. Equilibrium electrical properties (μ, α xx , and α zz ) and basic spectroscopic properties (r e, θe,D e, and infrared intensity (I)) have been computed. Basis set and electron correlation effects are analyzed in order to arrive at accurate values of the dipole moment and polarizability, which are not known experimentally. For the dipole moment, we obtain a value of 6.25 D, with an uncertainty of about 0.1 D. For α xx and α zz , we suggest respective values of 32 and 36 atomic units (a.u.) and error bars of about 1 and 2 a.u. With extended basis sets, the spectroscopic propertiesr e, θe, andD e are reproduced to high accuracy, which is the first time this has been achieved for this species byab initio methods. At the highest calculation levels,I is predicted to be very small. AlthoughI has not been measured, some support for this prediction comes from a recent infrared study of BeO-rare gas complexes. The QCI methods are shown to be much more sensitive to basis set, and even with large basis sets yield values of α zz andI which differ from CC results by an order of magnitude and three orders of magnitude, respectively. These differences doubtless arise from the importance of single excitations (T 1) for this molecule, as several terms involvingT 1 are neglected in the QCISD approximation compared with CCSD. We also report CC calculations with Brueckner orbitals, which yield results similar to those obtained with restricted Hartree-Fock orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaefer HF III (1971) J Chem Phys 55:176

    Google Scholar 

  2. Koch W, Collins JR, Frenking G (1986) Chem Phys Lett 132:330; Koch W, Frenking G, Gauss J, Cremer D, Collins JR (1987) J Am Chem Soc 109:5917

    Google Scholar 

  3. Frenking G, Koch W, Gauss J, Cremer D (1988) J Am Chem Soc 110:8007

    Google Scholar 

  4. Frenking G, Koch W, Collins JR (1988) J Chem Soc Chem Commun 1147

  5. Adamowicz L, Bartlett RJ (1985) J Chem Phys 83:6268

    Google Scholar 

  6. Thompson CA, Andrews L (1994) J Am Chem Soc 116:423

    Google Scholar 

  7. Yoshimine M (1964) J Chem Phys 40:2970; Verhaegen G, Richards WG (1966) J Chem Phys 45:1828; Huo WM, Freed KF, Klemperer W (1967) J Chem Phys 46:3556

    Google Scholar 

  8. Yoshimine M (1968) J Phys Soc Jpn 25:1100

    Google Scholar 

  9. O'Neil SV, Pearson PK, Schaefer III HF (1971) Chem Phys Lett 10:404; Pearson PK, O'Neil SV, Schaefer III HF (1972) J Chem Phys 56:3938

    Google Scholar 

  10. Langhoff SR, Bauschlicher Jr CW, Partridge H (1986) J Chem Phys 84:4474

    Google Scholar 

  11. Scuseria GE, Hamilton TP, Schaefer III HF (1990) J Chem Phys 92:568

    Google Scholar 

  12. Irisawa J, Iwata S (1992) Theor Chim Acta 81:223

    Google Scholar 

  13. Yoshioka Y, Jordan KD (1980) J Chem Phys 73:5899; Chem Phys 56:303

    Google Scholar 

  14. Pyykko P, Sundholm D, Laaksonen L (1987) Mol Phys 60:597

    Google Scholar 

  15. Diercksen GHF, Sadlej AJ, Urban M (1991) Chem Phys 158:19

    Google Scholar 

  16. Galasso V (1983) J Mol Struct (THEOCHEM) 10:201

    Google Scholar 

  17. Bauschlicher Jr CW, Langhoff SR (1988) Theor Chim Acta 73:43

    Google Scholar 

  18. Bauschicher Jr CW, Yarkony DR (1980) J Chem Phys 72:1138; Bauchlicher Jr CW Lengsfield III BH, Yarkony DR (1980) J Chem Phys 73:5702

    Google Scholar 

  19. Bauschlicher Jr CW, Bagus PS, Yarkony DR, Lengsfield III BH (1981) J Chem Phys 74:3965; Werner H-J, Meyer W (1981) J Chem Phys 74:5794; Golab JT, Yeager DL, Jörgensen P (1983) Chem Phys Lett 78:175

    Google Scholar 

  20. Chang KJ, Cohen ML (1984) Solid State Commun 50:487; Brey L, Christensen NE, Cardona M (1987) Phys Rev B 36:2638

    Google Scholar 

  21. Chiles RA, Dykstra CE (1981) J Chem Phys 74:4544

    Google Scholar 

  22. Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185

    Google Scholar 

  23. Stanton JF, Gauss J, Bartlett RJ (1992) J Chem Phys 97:5554

    Google Scholar 

  24. Lee TJ, Rice JE, Scuseria GE, Schaefer III HF (1989) Theor Chim Acta 75:81

    Google Scholar 

  25. Lee TJ, Taylor PR (1989) Int J Quantum Chem Symp 23:199

    Google Scholar 

  26. Dunning Jr TH, Hay PJ (1977) in Schaefer III HF (ed), Methods of electronic structure theory, Plenum, New York

    Google Scholar 

  27. Dunning Jr TH (1970) J Chem Phys 53:2823

    Google Scholar 

  28. Sadlej AJ (1988) Collec Czech Chem Commun 53:1995; Sadlej AJ, Urban M (1991) J Mol Struct (THEOCHEM) 234:147

    Google Scholar 

  29. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Google Scholar 

  30. Widmark PO, Malmqvist PA, Roos BO (1990) Theor Chim Acta 77:291

    Google Scholar 

  31. ACES II is a quantum chemical program package especially designed for CC and MBPT energy and gradient calculations. Elements of this package are: the SCF, integral transformation, correlation energy, and gradient codes written by Stanton JF, Gauss J, Watts JD, Lauderdale WJ, Bartlett RJ, the VMOL integral and VPROPS property integral programs written by Taylor PR and Almlöf J, a modified version of the integral derivative program ABACUS written by Helgaker T, Aa Jensen HJ, Jørgensen P, Olsen J, Taylor PR

  32. Huber KP, Herzberg G (1979) Constants of diatomic molecules, Van Nostrand Reinhold, New York

    Google Scholar 

  33. Stanton JF, Gauss JD, Watts J, Lauderdale WJ, Bartlett RJ (1992) Int J Quantum Chem Symp 26:879 and references therein; Watts J, Gauss JD, Bartlett RJ (1992) Chem Phys Lett 200:1; Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718

    Google Scholar 

  34. Purvis III GD, Bartlett RJ (1982) J Chem Phys 76:1910

    Google Scholar 

  35. Noga J, Bartlett RJ (1987) J Chem Phys 88:7041

    Google Scholar 

  36. Lee YS, Kucharski SA, Bartlett RJ (1984) J Chem Phys 81:5906

    Google Scholar 

  37. Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041

    Google Scholar 

  38. Noga J, Bartlett RJ, Urban M (1987) Chem Phys Lett 134:126

    Google Scholar 

  39. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1985) Chem Phys Lett 157:479

    Google Scholar 

  40. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513

    Google Scholar 

  41. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Google Scholar 

  42. Laidig WD, Purvis III GD, Bartlett RJ (1982) Int J Quantum Chem Symp 6:561

    Google Scholar 

  43. Laidig WD, Purvis III GD, Bartlett RJ (1983) Chem Phys Lett 97:209

    Google Scholar 

  44. Laidig WD, Purvis III GD, Bartlett RJ (1985) J Phys Chem 89:2161

    Google Scholar 

  45. Adamowicz L, Bartlett RJ (1986) Int J Quantum Chem Symp 19:217

    Google Scholar 

  46. Lee TJ, Rendell AP, Taylor PR (1990) J Phys Chem 94:5463

    Google Scholar 

  47. Martin JML, Taylor PR (1994) J Chem Phys 100:9002

    Google Scholar 

  48. Scuseria GE, Lee TJ (1990) J Chem Phys 93:5851

    Google Scholar 

  49. Bowman JM, Gazdy B, Bentley JA, Lee TJ, Dateo CE (1993) J Chem Phys 99:308

    Google Scholar 

  50. Bartlett RJ, Purvis III GD (1978) Int J Quantum Chem Symp 14:561

    Google Scholar 

  51. Watts JD, Bartlett RJ (1992) J Chem Phys 96:6073

    Google Scholar 

  52. Martin JML, Lee TJ, Scuseria GE, Taylor PR (1992) J Chem Phys 97:6549

    Google Scholar 

  53. Watts JD, Bartlett RJ (1994) Int J Quantum Chem Symp 28:195

    Google Scholar 

  54. Bartlett RJ (1989) J Phys Chem 93:1697

    Google Scholar 

  55. Bartlett RJ, Stanton JF (1994) in (eds) Review in computational chemistry, Lipkowitz KB, Boyd DB Vol. V, pp 65–169, VCH Publishers, New York

    Google Scholar 

  56. Kobayashi R, Koch H, Jørgensen P, Lee TJ (1993) Chem Phys Lett 211:94

    Google Scholar 

  57. Lee TJ, Kobayashi R, Handy NC, Amos RD (1992) J Chem Phys 96:8931

    Google Scholar 

  58. Rico RJ, Head-Gordon M (1993) Chem Phys Lett 213:224

    Google Scholar 

  59. Comeau DC, Bartlett RJ (1993) Chem Phys Lett 207:414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, J.D., Urban, M. & Bartlett, R.J. Accurate electrical and spectroscopic properties ofX 1Σ+ BeO from coupled-cluster methods. Theoret. Chim. Acta 90, 341–355 (1995). https://doi.org/10.1007/BF01113541

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113541

Key words

Navigation