Skip to main content
Log in

The phosphorescence of benzene obtained byab initio and semi-empirical calculations

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Radiative decay and phosphorescence of triplet stare benzene is doubly -orbital and spin- forbidden and is only activated through vibronic coupling among the manifold of triplet states. For this reason the determination of lifetime and transition moments for the decay of triplet benzene has posed a considerable challenge to both theory and experiment. In the present work we have addressed the triplet benzene problem at several levels of theory; by truncated perturbation theory and semiempirical, CNDO/S-CI, calculations; by complete sum-over-state calculations as implemented in recentab initio multiconfiguration quadratic response (MCQR) theory; and by direct MCQR calculations of vibronic phosphorescence. The vibronic coupling is in the two former cases treated by the Herzberg-Teller (H-T) perturbation theory, involving four main mechanisms for the phosphorescent decay of triplet benzene. The results and interpretations given by these approaches as well as their merits and limitations are presented and discussed in some detail. Our calculations indicate that the phosphorescent decay of the3 B 1u state takes place predominantly through vibronic coupling along thee 2g mode. We obtain a phosphorescence that is almost completely out-of-plane polarized, which is in line with more recent measurements by the microwave-induced delayed phosphorescence technique, and could reproduce quite well the intensity ratios for different vibronic bands obtained in that experiment. The final triplet state lifetime is the result of a delicate sum of contributions from several vibronic degenerate and non-degenerate modes. The direct vibronic phosphorescence calculations predict a long lifetime, about one minute — 68 seconds for the best wavefunction — and seem to focus on a doubling of the assumed, albeit not established, “best experimental” value for the radiative lifetime of triplet benzene; ⋍ 30 seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parr RG, Craig DP, Ross IG (1950) J Chem Phys 18:1561

    Google Scholar 

  2. Fischer-Hjalmars I (1960) Sv Kemisk tidskr 72:612

    Google Scholar 

  3. Fischer-Hjalmars I (1962) Arkiv Fysik 21:123

    Google Scholar 

  4. Fischer-Hjalmars I, Sundbom M (1968) Acta Chem Scand 22:607

    Google Scholar 

  5. Vahtras O, Ågren H, Jørgensen P, Jensen HJA, Helgaker T, Olsen J (1992) J Chem Phys 96:2118

    Google Scholar 

  6. Vahtras O, Årgen H, Jørgensen P, Jensen HJA, Helgaker T, Olsen J (1992) J Chem Phys 97:9178

    Google Scholar 

  7. Matos JHO, Roos BO, Malmqvist PÅ (1987) J Chem Phys 86:1458

    Google Scholar 

  8. Fülscher MP, Andersson K, Roos BO (1992) J Phys Chem 96:9204

    Google Scholar 

  9. Fülscher MP, Malmqvist PÅ, Roos BO (1990) In: Lakowitz LR (ed) Time-resolved spectroscopy in biochemistry II, page 322. Proc SPIE

  10. Albrecht AC (1963) J Chem Phys 38:354

    Google Scholar 

  11. Goeppert-Mayer M, Sklar AL (1938) J Chem Phys 6:645

    Google Scholar 

  12. Shull HJ (1949) J Chem Phys 17:295

    Google Scholar 

  13. McClure DS (1952) J Chem Phys 20:682

    Google Scholar 

  14. Sklar AL (1937) J Chem Phys 5:669

    Google Scholar 

  15. Mizushima M, Koide S (1952) J Chem Phys 20:765

    Google Scholar 

  16. Clementi E (1961) J Mol Spectroscopy 6:497

    Google Scholar 

  17. Dikun PP, Sveshnikov BY (1949) Zhur Eksptl i Teoret Fiz (Soviet JETP) 19:1000

    Google Scholar 

  18. Henry BR, Siebrand W (1969) J Chem Phys 51:2396

    Google Scholar 

  19. Krishna VG, Salzman WR (1969) J Chem Phys 50:3875

    Google Scholar 

  20. Olsen J, Jørgensen P (1985) J Chem Phys 82:3235

    Google Scholar 

  21. Breit G (1929) Phys Rev 34:553

    Google Scholar 

  22. Pauli W (1927) Z Phys 43:601

    Google Scholar 

  23. Thomas LT (1927) Phil Mag 3:1

    Google Scholar 

  24. Ågren H, Vahtras O (1993) J Phys B: At Mol Phys 26:913

    Google Scholar 

  25. Hettema H, Jensen HJA, Jørgensen P, Olsen J (1992) J Chem Phys 97:1174

    Google Scholar 

  26. Vahtras O, Ågren H, Jensen HJA, to be published.

  27. Olsen J, Yeager DL, Jørgensen P (1991) Chem Phys Lett 186:379

    Google Scholar 

  28. Jensen HJA, Ågren H (1984) Chem Phys Lett 110:140

    Google Scholar 

  29. Siegbahn PEM, Heiberg A, Almlöf J, Roos BO (1981) J Chem Phys 74:2384

    Google Scholar 

  30. Olsen J, Roos BO, Jørgensen P, Jensen HJA (1989) J Chem Phys 89:2185

    Google Scholar 

  31. Mineav BF (1979) Fizika Molecul 7:34

    Google Scholar 

  32. Mineav BF (1971) Izv Vysch Uccheb Zeved Fizika 8:118

    Google Scholar 

  33. Roche M, Jaffé HH (1974) J Chem Phys 60:1193

    Google Scholar 

  34. Nishimoto K, Mataga N (1957) Z Physik Chem 12:335

    Google Scholar 

  35. Neto M, Scrocco M, Califano S (1961) Spectrochim Acta 22:1981

    Google Scholar 

  36. Hameka HF, Oosterhoff JL (1958) Mol Phys 1:364

    Google Scholar 

  37. Mizushima M, Koide S (1953) J Chem Phys 20:765

    Google Scholar 

  38. Veeman WS, Van der Waals JH (1970) Mol Phys 18:63

    Google Scholar 

  39. Knuts S, Vahtras O, Ågren H (1992) THEOCHEM 279:249

    Google Scholar 

  40. Ågren H, Vahtras O, Knuts S, to be published.

  41. Dunning Jr TH (1970) J Chem Phys 53:2833

    Google Scholar 

  42. Dunning Jr TH (1971) J Chem Phys 55:716

    Google Scholar 

  43. Sadlej A (1988) Collection Czech Chem Commun 53:1995

    Google Scholar 

  44. Jensen HJA, Ågren H (1986) J Chem Phys 104:229

    Google Scholar 

  45. Jørgensen P, Olsen J, Jensen HJA (1988) J Chem Phys 74:265

    Google Scholar 

  46. Helgaker TU, Almlöf J, Jensen HJA, Jørgensen P (1986) J Chem Phys 84:6266

    Google Scholar 

  47. Helgaker TU, Taylor PR (1992) Unpublished

  48. Jensen HJA, Jørgensen P, Ågren H, Olsen J (1988) J Chem Phys 88:3824

    Google Scholar 

  49. Roos BO, Andersson K, Fülscher MP (1992) Chem Phys Lett 192:5

    Google Scholar 

  50. McGlynn SP, Azumi T, Kinoshita M (1969) Molecular Spectroscopy of the Triple State. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  51. Doering JP (1969) J Chem Phys 51:2866

    Google Scholar 

  52. The oscillator strengths are obtained with theE-factor given by the excitation energy to the3 B 1u state as given by experiment (the MCLR energy deviates only minorly, see Table 1).

  53. Rabalais JW, Maria HJ, McGlynn SP (1969) J Chem Phys 51:2259

    Google Scholar 

  54. van Egmond J, van der Waals JH (1973) Mol Phys 26:1147

    Google Scholar 

  55. Bendazolli GL, Palmieri P (1974) Int J Quant Chem 8:941

    Google Scholar 

  56. Langhoff SR, Davidson ER (1976) J Chem Phys 64:4699

    Google Scholar 

  57. Phillips P, Davidson ER (1982) J Chem Phys 86:3729

    Google Scholar 

  58. Colson SD, Bernstein ER (1965) J Chem Phys 43:2661

    Google Scholar 

  59. Wright MR, Frosch RP, Robinson GW (1960) J Chem Phys 33:934

    Google Scholar 

  60. Colson SD, Robinson GW (1968) J Chem Phys 48:2550

    Google Scholar 

  61. Johson PM, Koronowski GM (1983) Chem Phys Lett 97:53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Inga Fischer-Hjalmars on her 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knuts, S., Minaev, B.F., Ågren, H. et al. The phosphorescence of benzene obtained byab initio and semi-empirical calculations. Theoret. Chim. Acta 87, 343–371 (1994). https://doi.org/10.1007/BF01113390

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113390

Key words

Navigation