Skip to main content
Log in

On the dimerization process of nitroso compounds

A theoretical study of the reaction 2 HNO → (HNO)2

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Many organic C-nitroso compounds R-NO form stable dimers with a covalent NN bond. To gain insight into the dimerization reaction 2 R-NO ↓ (R-NO)2 a theoretical study of the dimerization to atrans-form was performed using HNO as a model compound. Complete geometry optimizations were carried out at the HF, MP2 and QCISD levels using a 6–31G* basis. In the stationary points energies were calculated at the MP4(SDTQ) and QCISD(T) levels. For the equilibrium structure of the monomer and dimers stable RHF solutions were found, whereas for the TS UHF and UMPn calculations were applied. Extensive spin contamination was found in the UHF wavefunction, and projections up tos+4 were invoked. Relative energies were corrected for differences in ZPE. Calculations were made (a) for the least-motion path (C 2h symmetry) and (b) for a path with complete relaxation of all internal coordinates. Along the latter path a TS having virtuallyC i symmetry was found. Along path (a) an activation energy of around 150 kcal/mol was predicted, in conformity with a symmetry forbidden reaction. On the relaxed path (b) the barrier to dimerization was estimated to be 10.7 kcal/mol at the MP4(SDTQ)//MP2 level, and 10.9 kcal/mol at the QCISD(T)//QCISD level. Unscaled ZPE corrections, calculated at the SCF level, changed these values to 12.7 and 12.9 kcal/mol, respectively. The reaction energy for the dimerization process is predicted to be − 17.2 kcal/mol at the MP4(SDTQ)//MP2 level corrected for ZPE. Calculations at the G1 level gave a corresponding value of − 16.4 kcal/mol. The equilibrium constant for the association to thetrans dimer is estimated to beK p =259 atm, indicating that the dimer should be an observable species in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baly C, Desch N (1908) J Chem Soc 93:1747

    Google Scholar 

  2. Piloty O (1898) Ber Dt Chem Ges 31:456,1878; (1901) ibid 34:1863; (1902) ibid 35:3090,3101

    Google Scholar 

  3. Darwin C, Hodgkin DC (1950) Nature 166:827

    PubMed  Google Scholar 

  4. Fenimore CP (1950) J Am Chem Soc 72:3226

    Google Scholar 

  5. Lüttke W (1954) J Physique et la Radium 15:633

    Google Scholar 

  6. Lüttke W (1955) Angew Chem 67:235; (1956) ibid 68:417; (1957) ibid 69:99

    Google Scholar 

  7. Lüttke W (1956) Habilitationsschrift Univ Freiburg i. Br.

  8. Lüttke W (1957) Z f Elektrochemie 61:302,976

    Google Scholar 

  9. Kübler R, Lüttke W, Weckherlin S (1960) Z f Elektrochemie 64:657

    Google Scholar 

  10. Hammick DL (1931) J Chem Soc 3105

  11. Chilton HTJ, Gowenlock BG, Trotman J (1955) Chem and Ind 538

  12. Gowenlock BG, Trotman J (1955) J Chem Soc 4190; (1956) ibid 1670

  13. van Meersche M, Germain G (1959) Bull Soc Chim Belges 68:24411

    Google Scholar 

  14. Germain G, Piret P, van Meersche M (1963) Acta Cryst 16:109

    Google Scholar 

  15. Leroy G, van Meersche, M, Germain G (1963) J Chim. Physique 1282; Leroy G, Martin P, Peeters D (1974) ibid 319

  16. Orgel LE (1953) J Chem Soc 1276

  17. Wu AA, Peyerimhoff SD, Buenker RJ (1975) Chem Phys Lett 35:316

    Google Scholar 

  18. Herzberg G (1966) Molecular spectra and molecular structure III: Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand Reinhold, p 289, 496, 598

    Google Scholar 

  19. Gowenlock BG, Lüttke W (1958) Quart Rev Chem Soc 12:321

    Google Scholar 

  20. von Keussler V, Lüttke W (1959) Z f Elektrochemie 63:614

    Google Scholar 

  21. Tarte P (1954) Bull Soc Chim Belges 63:525

    Google Scholar 

  22. Mc Ewen KL (1961) J Chem Phys 34:547

    Google Scholar 

  23. Ha TK, Wild UP (1974) Chem Phys 4:300

    Google Scholar 

  24. Bhujle V, Wild UP, Baumann H, Wagnière G (1976) Tetrahedron 9:653

    Google Scholar 

  25. Boyer JH (1969) in: Feuer H (ed) The chemistry of the nitro and nitroso groups. Interscience, NY, Part 1, Chap 5, p 264

    Google Scholar 

  26. DMS UV atlas of organic compounds. Verlag Chemie, Weinheim, 1971, Spectrum no. C4/1

  27. Hoffmann R, Gleiter R, Mallory FB (1970) J Am Chem Soc 92:1461

    Google Scholar 

  28. Minato T, Yamabe S, Oda H (1982) Can J Chem 60:2740

    Google Scholar 

  29. Yamabe S, Minato T, Osamura Y (1980) Int J Quant Chem 18:243

    Google Scholar 

  30. Heiberg AB (1977) Chem Phys 26:309; ibid 43:415

    Google Scholar 

  31. Christie MI, Frost JS, Voisey MA (1965) Trans Faraday Soc 61:674

    Google Scholar 

  32. Hughes MN (1968) Quart Rev Chem Soc 22:1

    Google Scholar 

  33. Kohout FC, Lampe FW (1967) J Chem Phys 46:4075

    Google Scholar 

  34. (a) He Y, Sanders WA, Lin MC (1988) J Phys Chem 92:5474;

    Google Scholar 

  35. (b) Choudhury TK, He Y, Sanders WA, Lin MC (1990) ibid 94:2394

    Google Scholar 

  36. Tsang W, Herron JT (1991) J Phys Ref Data 20:646

    Google Scholar 

  37. Coe CS, Doumani TF (1948) J Am Chem Soc 70:1516

    Google Scholar 

  38. Tarte P (1953) Bull Soc Roy Liège 22:26

    Google Scholar 

  39. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Google Scholar 

  40. Hariharan PC, Pople JA (1975) Theor Chim Acta 28:213

    Google Scholar 

  41. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Google Scholar 

  42. Pople JA, Head-Gordon M, Fox DJ (1989) J Chem Phys 90:5622

    Google Scholar 

  43. GAUSSIAN 90 Frisch MJ, Head-Gordon M, Trucks GW, Foresman JB, Schlegel HB, Raghavachari K, Robb MA, Binkley JS, Gonzales C, Defrees DJ, Fox DJ, Whiteside RA, Seeger R, Melius CF, Baker J, Martin RL, Kahn LR, Stewart JJP, Topiol S, Pople JA (1991) Carnegie-Mellon Quantum Chemistry Publ Unit, Pittsburgh PA

  44. Callear AB, Wood PM (1971) Trans Faraday Soc 67:3399

    Google Scholar 

  45. Krauss M (1969) J Res Natl Bur Std US 73A:191

    Google Scholar 

  46. Salotto AW, Burnelle L (1969) Chem Phys Lett 3:80

    Google Scholar 

  47. Williams GR (1975) Chem Phys Lett 30:495

    Google Scholar 

  48. Wu AA (1977) Chem Phys 21:173

    Google Scholar 

  49. Bruna PJ, Marian CM (1979) Chem Phys Lett 67:109

    Google Scholar 

  50. Heiberg A, Almløf J (1982) J Chem Phys Lett 85:542

    Google Scholar 

  51. Walch SP, Rohlfing CM (1989) J Chem Phys 91:2939

    Google Scholar 

  52. Dalby FW (1958) Can J Phys 36:1366

    Google Scholar 

  53. Petersen JC (1985) J Mol Spectrosc 110:277

    Google Scholar 

  54. Gill PMW, Radom L (1986) Chem Phys Lett 132:16

    Google Scholar 

  55. Sosa C, Schlegel HB (1986) Int J Quant Chem 29:1001

    Google Scholar 

  56. Schlegel HB (1986) J Chem Phys 84:4530

    Google Scholar 

  57. Knowles PJ, Handy NC (1988) J Chem Phys 88:6691

    Google Scholar 

  58. Yamaguchi K, Takahara Y, Fueno T, Houk KN (1988) Theor Chim Acta 73:337

    Google Scholar 

  59. Stark JG, Wallace HG (1988) Chem data book. John Murray, London

    Google Scholar 

  60. Batt L, Milne RT (1973) Int J Chem Kinet 5:1067

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüttke, W., Skancke, P.N. & Traetteberg, M. On the dimerization process of nitroso compounds. Theoret. Chim. Acta 87, 321–333 (1994). https://doi.org/10.1007/BF01113388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113388

Key words

Navigation