On the Glivenko-Cantelli theorem

  • Flemming Topsøe


Various generalizations of the classical Glivenko-Cantelli theorem are proved. In particular, we have strived for as general results as possible for theoretical distributions on euclidean spaces, which are absolutely continuous with respect to Lebesgue measure.


Stochastic Process Probability Theory Euclidean Space General Result Lebesgue Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmad, S.: Sur le théorème de Glivenko-Cantelli. C.r. Acad Sci., Paris252, 1413–1417 (1961).Google Scholar
  2. 2.
    Billingsley, P., Topsøe, F.: Uniformity in weak convergence. Z. Wahrscheinlichkeitstheorie verw. Geb.7, 1–16 (1967).Google Scholar
  3. 3.
    Blum, J. R.: On the convergence of empiric distribution functions. Ann. math. Statistics26, 527–529 (1955).Google Scholar
  4. 4.
    Fortet, R., Mourier, E.: Convergence de la répartition empirique vers la répartition théorique. Ann. sci. école norm, sup., III. Sér.60, 267–285 (1953).Google Scholar
  5. 5.
    Glivenko, V.: Sulla determinazione empirica della leggi di probabilità. Giorn. Ist. Ital. Attuari AnnoIV, 92–99 (1933).Google Scholar
  6. 6.
    Hansen, P. E.: Konvekse figures Jordan-indhold. Nordisk mat. Tidskr.9, 26–28 (1961) [in danish].Google Scholar
  7. 7.
    Hausdorff, F.: Mengenlehre, 2. Aufl. Berlin-Leipzig: Gruyter 1927.Google Scholar
  8. 8.
    Meyer, P.A.: Probability and potentials. Waltham Massachusetts: Blaisdell 1966.Google Scholar
  9. 9.
    Rango Rao, R.: Relations between weak and uniform convergence of measures with applications. Ann. math. Statistics33, 659–680 (1962).Google Scholar
  10. 10.
    Sazonov, V.V.: On the Glivenko-Cantelli theorem. Theor. Probab. Appl.8, 282–285 (1963).Google Scholar
  11. 11.
    Topsøe, F.: On the connection betweenP-continuity andP-uniformity in weak convergence. Theor. Probab. Appl.12, 281–290 (1967).Google Scholar
  12. 12.
    Tucker, A.G.: A generalization of the Glivenko-Cantelli theorem. Ann. math. Statistics30, 828–830 (1959).Google Scholar
  13. 13.
    Varadarajan, V.S.: On the convergence of probability distributions. Sankyā19, 23–26 (1958).Google Scholar
  14. 14.
    Wolfowitz, J.: Generalization of the theorem of Glivenko-Cantelli. Ann. math. Statistics25, 131–138(1954).Google Scholar
  15. 15.
    - Convergence of the empiric distribution function on half-spaces. Contributions to probability and statistics 504–507 (1960).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Flemming Topsøe
    • 1
  1. 1.H.C. ørsted InstitutetKøbenhavns Universitets Matematisk InstitutKøbenhavn øDanmark

Personalised recommendations