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On the Glivenko-Cantelli Theorem 

FLEMMING TOPSOE 

Summary. Various generalizations of the classical Glivenko-Cantelli theorem are proved. In 
particular, we have strived for as general results as possible for theoretical distributions on euclidean 
spaces, which are absolutely continuous with respect to Lebesgue measure. 

Let {X,} be a sequence of independent identically distributed real random 
variables with distribution P and let {P~o~} denote the empirical distributions. The 
classical Glivenko-Cantelli theorem asserts that 

lim suplP~o~((-oo, x])-P((-~,x3)l=o a.e. 

There are several natural suggestions of generalizations: 

1) Replace the range space/~ by a more general space. 

2) Replace the class {(-o% X]}x~ k by other classes of measurable sets or, 
more generally, measurable functions. 

3) Try to study other random sequences {P~} obeying the SLLN. 

4) Investigate cases where one does not get 0 as the almost sure limit. 

Another suggestion, perhaps more interesting than the previous ones, is to 
investigate the rate of convergence. However, with the methods of the present 
paper, nothing can be said about this question. 

Denote by S a separable metrizable space, by ~(S) the Borel o--field on S and 
by ~ (S,/~) the set of bounded real measurable functions on S. Given is a probability 
measure P on S and a subfamily ~ of N(S,/~). We choose a canonical version of 
the problems and take as basic probability space (Q,., .) the completion of the 
countable product space (S, N(S), P)~ and as random elements the coordinate 
mappings {Xn},~ ~ (X,(co)=x, where co=(x> x2, ...)). Define functions G n of f2 
into the extended real line by 

G,(co) = sup [~fdP~o~-~fdP f 
f e n  

= sup [1/n ( f (X 1 co) +... +f(X,  co))- ~ f dP[. 
f sN 

Of course, these functions depend on ~ and P too. By the upper Glivenko-Cantelli 
function G(.) we shall understand the function 

G(c~) = limsup G,(co). 
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The lower Glivenko-Cantelli function is the function 

_G (co) = liminf G. (co). 
n---~ oo 

We shall assume that the upper and lower Glivenko-Cantelli functions are 
measurable. This is a very weak assumption - indeed, I do not know whether it is 
always fulfilled. In all "natural ly"  occuring cases G(.) and _G(.) will be measurable 
simply because the functions G,(.) are so, but even in cases where none of the 
Gn(. ) functions are measurable can it happen that G(.) and _G(.) are measurable. 
(To see this, consider a non-atomic P, any subset A of S and the class of functions 
{ fa}a~_A where f ,  (x)= 1 for x = a, 0 for x ~ a; it will follow from results in this paper 
that G(.) and _G(.) both are measurable and equal to 0 a.e.) 

The functions G(.) and _G(.) are symmetric and by assumption they are 
measurable. Applying a well known result of Hewitt and Savage and Kolmogorovs 
zero-one law (see [8]), it follows that G(.) and _G(.) are constants a.e. It is natural 
to define the upper and lower Glivenko-Cantelli constants G and G by 

G(co)= G a.e., 

_G(co)=G a.e. 

If G=_G, we denote the common value by G and call it the Glivenko-Cantelli 
constant. 

The constants introduced depend on the probability-measure P and the class 
of functions Y ;  whenever convenient, we shall use notation such as G (P, ~) .  

How can we calculate the Glivenko-Cantelli constants? Are the upper and the 
lower Glivenko-Cantelli constants always equal? When is the Glivenko-Cantelli 
constant zero? 

None of these questions we can answer completely. What I shall do below is 
to derive some sufficient conditions ensuring that G is zero. I believe that these 
conditions are close to beeing necessary as well, in fact I have been unable to find 
an example with G = 0, which can not be handled by Lemma 2 and Theorem 1 
below. 

The method which is essentially due to Ranga Rao ([9]) consists in considering 
an associated problem on weak convergence. First, we note that for any f sN(S , /~ )  
we have (by SLLN) 

~ f d P . ~ S f d P  a.e. co. 

By a result of Varadarajan (see [13]) one can find countably many functions in 
r such that convergence for these implies weak convergence. Therefore, in 
our situation we can assert that: 

For almost all co, P.o converges weakly to P as n ~ oo. 

The associated problem on weak convergence we in this way are led to consider 
is as follows: Given P, a probability-measure (or just a finite measure) and ~- a 
subclass of N (S,/~), define a number c~ = c~ (P, ~-) = c~ (P, ~ ;  S) by 

c~= sup limsup sup I~ fdP. -S fdPI ,  
P n ~ P  n ~ o o  f ~ o  ~ 
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where the first supremum is taken over all sequences of probability-measures 
(or, just as well, finite measures) converging weakly to P; the problem is to calculate 
e. From the above remarks we obtain 

Lemma 1. Given P ,~ .  The inequality G ( P , Y ) < c ~ ( P , ~ )  always holds. In 
particular, ~ (P, ~ )  = 0 implies G (P, Y )  = O. 

The condition e = 0 is not necessary for G to be zero (it is easy to construct an 
example with P a point mass). However, we only have to split the space S in measur- 
able parts and investigate what happens on the individual parts to arrive at a 
criterion which is much closer to being necessary. 

Lemma 2. Given P, ~,~ and assume that ~ is uniformly bounded. Let S = ~ S i 
i 

be a decomposition of S in finitely or countably many Borel sets, denote by Pi the 
restriction of P to S i and by ~i the subclass of N(S i, _R) obtained by restricting the 
functions in ~ to S i. Then 

G(P, ~)--<~ ~(8, G; s); 
i 

therefore, G is smaler than or equal to the infimum of all sums ~ o~(...) obtainable 
by decomposing S as described, i 

In particular, if there exists a decomposition with a(P/, ~ ;  Si)=0 for all i then 
G(P, Y ) = 0 .  

The first step of the proof consists in removing a null set such that, for each i, 
the restriction of P,,) to S i converges weakly to Pi. 

Consider a fixed (n among the remaining ones and a positive ~. Put K =  
sup { I[ f I1" f ~  ~} .  By assumption K < ~ .  Assume that {Si} is infinite and indexed by 
the positive integers. Choose i o so large that P( ~ Si)< ~/K. Since P,o S i-~ PS i for 

i>io  

each i, P~,o((..) S i )~  P(Q) Si). 
i> io i> io 

Now we have 

limsup sup I~ f dP,~,- ~ f dP I 
n ~ c e  f ~ o *  

<limsup ~ sup l ~ f d ~ . -  ~ fdP I 
n ~  ~ " f ~  Si Si 

<limsup E sup] ~fdP,  o,-  ~fdP]+2e 
n ~  i<io f ~ Y  Si Si 

N ~ limsup sup [ ~ f d P , ~ -  Sfdp]+2e 
iNio n ~ m  f ~  Si Si 

i 

and we easily derive the desired inequality. 

Remark. Note that the proof only depends on the independance via the validity 
of the SLLN. Accordingly, Lemma 2 (also Lemma 1 of course) remains valid if 
{P,~} is any sequence of random measures on S obeying the SLLN with respect to 
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the measure P and defined on some complete probability space. This remark 
might turn out to be important when one is searching for criteria which are 
necessary. 

Lemma 2 implies an useful extension of Lemma 1. Let P=P~t+P~ be the 
decomposition of P in its atomic and non-atomic part. I f  o~ is uniformly bounded 
and if e(P~, ~ ) = 0  then G(P, ~ ) = 0 .  To see this, let {xl, x 2 . . . .  } be the set of atoms 
and consider the decomposition (So, $1, S 2 . . . .  ) of S where Si= {xi} for i>1 and 
S o = S \  0 Si. Then c~ (P~, ~ ;  Si) = 0 for i > 1 and c~ (Po, ~o; So) < c~(Pc, ~ )  = 0. Hence, 

i>=1 
G(P, ~-) = 0. 

The simple lemmas we have obtained so far are useless if they are not supplied 
by information telling us how to calculate the a-quantities. One can in fact give a 
direct formula for c~ = c~(P, ~ ) ,  at least for a class of indicator functions, but we shall 
limit ourselves to give necessary and sufficient conditions for e(P,, ~ )  to be zero. 
Classes ~- with this property have been studied in [2] and [11] where they were 
called P-uniformity classes. I have decided to limit the discussion to the case 
where ~ is a class of indicator functions. It is left to the reader to deduce from [-2] 
and [11] those "Glivenko-Cantelli theorems" on classes of functions he might 
find interesting. We borrow from [-11] the following result: 

Theorem 1. Let 9X be a subclass of ~(S)  and P a probability measure or just a 
finite measure. Then 9X is a P-uniformity class (i.e. ~(P, ~ ) = 0 )  if and only if 

P A, = 0  

for every sequence {6,} ~,0 and every sequence {A,} of sets from 9.I. 

Here ~oA, the b-boundary of A, is the set of those points within distance b from A 
as well as from A c (the complement of A). The ordinary boundary is 0A = (-] ?~A. 

6>0 
I claim that all Glivenko-Cantelli theorems of the type considered which have 

been published so far are corollaries to Lemma 2 and Theorem 1, and in fact 
rather simpel corollaries. Perhaps I can provoke someone either to show me 
that my claim is unjustified or else to prove that the method leeds to essentially 
necessary and sufficient conditions. 

Let us recall some steps in the development of Glivenko-Cantelli results. The 
classical result is due essentially to Glivenko and was proved in 1933. In 1953 
Fortet and Mourier established a result for halfspaces in/~k, assuming that P is 
absolutely continuous with respect to 2 (Lebesgue measure). This assumption 
was removed in papers by Wolfowitz, 1954 and 1960. In 1955 Blum obtained a 
result for a class of sets in/~k much larger than the class of half-spaces and any P 
with P < 2. Tucker considered stationary sequences instead of independent ones 
(1959). Independantly of each other, Ranga Rao and Ahmad obtained a result 
for the class of convex sets and P ~ 2  (1962, 1961). In 1963 Sazonov published the 
only non-trivial result, I know of, giving an example where G(P, 91)> 0; in that 
example ~l is the class of halfspaces in an infinite-dimensional space. 

Let us illustrate how our method works by proving one of the above mentioned 
results. 
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Theorem 2. I f  S is an Euclidean space R" and 91 the class of all closed halfspaces 
then G(P, 92)=0 for all P. 

First assume that S is a measurable subset of/~n and that P is a probabili ty 
measure, or just a finite measure on S such that P(Sc~H)=O for every ( (n-1)-  
dimensional) hyperplane H in /~n. Let us prove that S ~ 91= {S c~ A: A closed 

halfspace in/~"} is a P-uniformity class. Consider a set D =  (~ 06~(S n Ak) of the 
1 

form appearing in Theorem 1. The b-boundaries 06~(S c~ Ak) are to be calculated 
in the space S. We claim that D is a subset of a set of the form S ~ H with H a 
hyperplane in/~". If this were not so, we would be able to find n + 1 points xz . . . . .  x,  + 1 
in D such that no hyperplane passes through all of them. Choose k so large that no 
hyperplane intersects all the spheres S(xa, 6~) . . . . .  S(x,+~, bk). Now we arrive at 
a contradiction since each of these spheres contains a point from the hyper- 
plane 0Ak. 

We can now complete the proof. Let P be any probabili ty measure in Rn and 
denote by 2[ the class of closed halfspaces. It is easy to see that one can construct a 
countable decomposit ion of/~" in measurable sets: 

v=O i 

where each S,, i is a subset of a v-dimensional affine subspace in/~" (a v-flat) such 
that every (v-1)-f la t  i n k ,  intersects Sv, i in a set of measure 0. (The union ~ S~,~ 

i 
for v=n can be chosen to consist of one set.) Each one of the sets S~,~ can in an 
obvious way be considered as a subset of R ~. When doing so we find that the class 
S~,~ c~ 92 consists of the set S,,i itself and of all sets of the form S~,~ c~ A with A a 
closed halfspace i n /~ .  By the result in the first half of the proof, 

~(P~,i, S~,i c~ 92; S~,~)=0, 

where P~,i is the restriction of P to Sv, i. By Lemma 2, G(P, 92)=0 follows. 

Glivenko-Cantelli Results for Classes of "Non Diffuse" Sets 

The simplest classes to be studied in this section are those consisting of convex 
sets. If  we insist on only proving theorems of a very concrete nature, where the 
assumptions are easy to check, I find that one must limit oneself to special spaces. 
I have chosen to give as general concrete results, I have been able to for euclidean 
spaces. Before starting this development, let me state the best result, I have been 
able to find, valid in infinite-dimensional spaces: Let S be a separable Banach 
space, real or complex, and let 9.I be a class of closed convex sets such that the class 
K c~ 92= {Kc~A: A~92} is closed in the notion of closed topological convergence 
for each compact and convex set K; if P (or just the non-atomic part of P) is 91-con- 
tinuous (i.e. if P(0A)=0  for all A in 92) then G(P, 91)=0. The proof  is based on 
ideas in [2] and Lemma 2; I shall leave the details to the reader. 
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The Glivenko-Cantelli results we shall derive below will be based on the simple 
Lemma 1, thus we shall concentrate on finding P-uniformity classes. We noted in 
[11] that if the class 9J, intuitively speaking, is "closed" then 9.I is a P-uniformity 
class for every ~l-continuous P. Such classes are called ideal uniformity classes. 
(Notice that P must be N-continuous if 9.I is a P-uniformity class.) For an ideal 
uniformity class ~l we have the Glivenko-Cantelli result that G(P, 9.I)=0 for 
every N-continuous P. In an euclidean space we shall agree only to find such a 
result interesting if we among the N-continuous measures find every measure 
absolutely continuous with respect to Lebesgue measure 2. What we shall search 
for then is ideal uniformity classes 9.1, such that 2 is N-continuous. 

As in [11] we shall work with the notion of closed topological convergence. 
If {F,} is a sequence of closed subsets of S, we define lim sup F, [lim inf F,] as the set 
of those xeS  for which every neighbourhood ofx intersects F, for infinitely many n 
[for all n sufficiently large]. By definition {F,} converges to F in the notion of 
closed topological convergence if liminf F, = limsup F, = F; we shall write F, ~ F 
in this case. The most important general result on this notion of convergence is 
Hausdorffs selection theorem stating that any sequence of closed sets has a 
convergent subsequence; this is true in any second countable space ([-7] p. 147). 

We shall now define the classes of sets, we will investigate. To define these, we 
need a specific metric, call it d, on our separable metrizable space S. For a subset A 
of S and a positive 6 we denote by S (A, 6) the 6-neighbourhood of A i.e. S (A, 6)= 
{x:d(x, A)< 6}; in particular, S (x, 6) denotes the open sphere 

S(x, 6)= {y: d(y, x)<6}; 

the closed sphere will be denoted by S Ix, 6] i.e. S Ix, 6] = {y: d(y, x) < 6}. Although 
it is not absolutely necessary, we shall assume that all spheres S(x, 6) are connected; 
the convenience of this assumption lies in the fact that it allows us to use the 
formula 0~ A = S(~A, 6). 

Now, let t/be a non-decreasing function defined for all positive real numbers, 
satisfying the inequalities 0 <r/(6)< 6; 6 >0. By ~I, we denote the class of those 
Borel-sets A satisfying the condition: 

v v S[x, 6]\O.~,~(A)+O. (1) 
xeOA 6 > 0  

Here are some useful equivalent forms of the defining property (1): 

V V S[x, 6]\S(aA,~(6))*O, (2) 
xe~A 6 > 0  

V V ~ S(y,q(b))~OA=O, (3) 
xer)A 5 > 0  y~S[x,6] 

V V ~ S(y, tl(6))=AvS(y, tl(6))c~A=O. (4) 
x~OA 6 > 0  y~S[x,5] 

Notice that in (4) we allow a different alternative from point to point. If we had 
only allowed the second alternative in (4) then the class we obtained would be, 
loosely speaking, a class of sets without small holes. Perhaps one could say that 
the classes 9.17 are classes consisting of not too "diffuse" sets. 
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Let us collect some immediate consequences of the definition: 

Lemma 3. (i) I f  ill < tl2 then 9.1,, ~ 9X,~. 

(ii) I f  A~91, then OA has empty interior. 

(iii) I f  A69.I,, B e N ( S )  and if OBcOA then BEg.I . 

In particular, it follows that A (the closure of A) and ]t (the interior of A)  are 
in 9.1, if A is so. 

Now we shall prove a more substantial result by specializing the structure of S. 

Lemma 4. Let (S, d) be a locally compact, locally connected separable metric 
space such that all spheres are relatively compact and connected. Consider one of the 
classes 9.1, a_nd assume that {A~} is a sequence of sets in 9.I, such that the sequence of 
closures {An} converges, say A.--*F, and such that the sequence of boundaries 
{0An} converges, say O A n ~ D. Let A denote the set A -- F \  ( D c~ F). Then O A = D and 
A ~91,. 

Proof. Put D ~ F = A. We find that ~?A c OF w 0A c OF w D. To prove 0A c D it 
is therefore enough to prove • F c D ;  this inclusion has nothing to do with the 
special character of our sets. To prove it, assume that x ~ ? F  and consider a sphere 
S(x, 6). 

Since x ~ F and A~ ~ F, the sets S (x, 6)c~ A n are non-empty for all n sufficiently 
large, and the same then holds for the sets S(x, 6)c~ A n. S(x, 6) contains a point 
not in F and it is seen that the sets S(x, 6 ) \A  n are non-empty for all n sufficiently 
large. We now use that S(x, 6) is connected and conclude that S(x, 6)c~ OA~=O 
for all n sufficiently large. 6 was arbitrary, so it follows that x~l im 0A~ = D. 

To prove D cOA we treat the two inclusions D c A  and D ~ A  ~ separately. 
The latter is easy since, if x~D and the sphere S(x, 6) intersects F then it also 
intersects A ~ and if the sphere does not intersect U then x ~d  c A  ~. The proof  of 
the remaining inclusion D ~ A and of A e 9.I, is carried out simultaneously. 

Let x~D and 6 >  0. There exists a sequence {xn~ } such that n~ < n 2 < . . . ,  such 
that xn~-+ x and such that x,k~OA,~ for all k. Choose the sequence {y,~} such that, 
for all k, Y,~ ~ S [x,~, 6] and S (y,~, t/(6)) c~ 0An~ = ~. By the compactness assumption, 
{y,~} has a convergent subsequence. Assume for simplicity that {y~} itself con- 
verges, say Yn~ --* Y. Clearly, y ~ S [x, 6]. It is also easy to see that for any z E S (y, t/(6)) 
there exists an e > 0 such that the sets S(z, e) c~ cgA, are empty for infinitely many n. 
We see from this that S (y, t/(6))n D = ~. What  we have proved is the following: 

v v 3 S(y,~(6))aD:0. (5) 
xeD 6>0 yES[x,6] 

Since A is measurable, it follows from (5) and the inclusion 0A c D that A 6 9/~. 

The last thing to prove is the inclusion D c A .  Let x~D. In case x(~A we have 
xeA .  In the other case x~A, we first choose 6 o > 0  such that S(x, 6o)cF.  Then, if 
0 < 6 < 6  o and if we consider the point y appearing in (5), we see that yr  and it 
follows that y ~ A. The proof  of D c / 1  is complete. 
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Theorem 3. Let again (S, d) be a separable metric space with relatively compact 
and connected spheres. Then all the classes 92~ are ideal uniformity classes and, 
furthermore, we have the Glivenko-Cantelli result that G(P, 92 , )=0 / f  and only if 
the non-atomic part of P is 92,-continuous. 

Proof For a sequence {A,} of sets in 92, and a sequence {6.}+0, select a sub- 
sequence {A.~} such that both sequences {A..} and {OA.~} converge, say A.~-~ F 
and OA=~ ---, D. Put A = F\(D n F). We find that 

n=l  k=:t k = l  

By Lemma 4, D=~A and A~92,. By Theorem 1, 9I~ is an ideal uniformity class. 

Having seen that 92, is an ideal uniformity class, we easily derive the more 
important part, viz. the "if"  part of the Glivenko-Cantelli result in the theorem. 

Lastly, assume that the non-atomic part of P is not 92,-continuous. Then for 
some set A e 9I~ we have P(OA\So)> 0, where S O denotes the set of atoms of P. By 
SLLN we can find an co-set t2 o of probability 1 such that P.o~ (~A\So) ~ P(~A\So) 
for every co~t2 o. For each n > l  and co~t2 o consider the set 

A , o  = {Xl(co), X2 (co), . . . ,  X,(co)} c~ (~A\So). 

By property (iii) of Lemma 3 we have that A .~9 . I , .  Since P.o~(A.~,)=P~,(OA\So) 
and P(A.,o) = 0 we now see that G (P, 92,) > P(3A\So) > O. A 

Remark. The result in Theorem 3 can be extended as follows: consider any one 
of the classes 92, and any P. Then _G(P, 92,) = G(P, 9.1,) and the Glivenko-Cantelli 
constant is given by 

G(P, 92,)= sup {P~(0A): A~92,}, 

where Pc denotes the non-atomic part of P. This is proved by the same method as 
above but one has to use a generalized version of Theorem 1. 

We shall now examine the situation in an euclidean space. 

Lemma 5. Let (S, d) be the euclidean space RN with the usual euclidean metric. 

(i) I f  tl is the identity: ri(6)=6; 6>0,  then 9.1, consists of those Borel sets A 
for which there exists a convex set C such that OA ~ ~C. 

(ii) I f l imsup t/(6)/6 > 0 then Lebesgue measure 2 is 92,-continuous. 
6-->0 

Proof. (i) Let C be convex. If x ~ C  and 6 > 0  then there exists a point in 
S [x, 6]\S(C,  6). It follows that the Borel set A lies in 92, if 0A c 0C. 

Assume now that A ~ 92,. Consider a point x e 0A. Choose a sequence of points 
{y=} and a sequence {6.} such that y . eS[x ,  6.]\S(~A, 6n), such that 6.--+o2, and 
such that the unit vectors d(x, y . ) - l ( y . - x )  converge, say to e. Denote by H= the 
closed halfspace H x = {y: the inner product ( y -  x, e)  < 0}. Then OA ~ H~. When 
doing this for every xEOA, we can define the convex set C =  ~ { H :  xeOA}. It is 
easy to see that OAc~C. 
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(ii) Let A be a set in 91,. By the density theorem of Lebesgue, ~im 2(S(x, 6)) -1. 

2(S (x, 6)c~ 0A)= 7~0A, the characteristic function of 0A, a.e. L By assumption, this 
limit is < 1 for every xeOA (assuming that the limit exists). Hence X0A=0 a.e.2 
i.e. 2(3A)=0. Below the reader will see how this result can also be proved by very 
elementary considerations. _J 

Combining Theorem 3 and property (ii) above we obtain a Glivenko-Cantelli 
result of the desired strength: 

Theorem 4. For a class 91, in an euclidean space with limsup r/(6)/6 > 0 we have 
6 ~ 0  

G (P, 91,)= 0 for every P with a non-atomic part absolutely continuous with respect 
to Lebesgue measure. 

A few examples are on their place here. Blum [3] considers in/~N the class 
911 of Borel sets A possessing the following property: If (xl, . . . ,Xu)eA and 
(Yl . . . . .  YN) is such that y i<xi  for i=1 . . . . .  N then (Yl . . . . .  yN)eA. If 91j,j= 2, ..., 2 N 
denotes the classes of sets obtained by reversing, one at a time, the N inequalities 

occuring in the definition of 911, then Blum proves that 91=U 91; satisfies 
1 

G(P, 91)=0 for every P ~ 2 .  Clearly, this result is a corollary to Theorem 4 
(take v/(6) = 6 / 1 ~  ). 

Consider the class 91={S(B,A): B any subset, 4 > Ao }  where A 0 is a fixed 
positive number. Then 91c91, with q(6)=min(c~,Ao) so that, by Theorem4, 
G(P, 91)=0 for every P ~ 2 .  Another class of sets which can be dealt with using 
Theorem 4 is the class of open sets contained in a fixed bounded domain of the 
euclidean space and being (arbitrary) unions of open convex sets each of which 
contains a sphere of some fixed radius. 

The last problem we shall investigate is to which extent one can generalize 
(ii), Lemma 5. 

Theorem 5. Consider one of the classes 9.1 in [U v. 
1 

(i) I f  ~ 6 -(u+1) tl(6) u d6= oo then 2(c~A)=0 for all Ae91,.  
0 

1 

(ii) I f  ~ 6-  (U + 1) /~ (0)N d6 < oo then there exists a g~o > 0 and a set A e 91,, where 
0 

tl' = tl /~ tl (60) such that 2 (OA) > O. 

For n > 0 denote by 91,, the decomposition of/~N in cubes each of volume 
(2-measure) 2 -u ,  which is effectuated in the "natural"  way by N systems of hyper- 
planes orthogonal to the N coordinate axes with each system containing a hyper- 
plane through (0, 0 . . . .  ,0). All cubes mentioned below are supposed to have faces 
orthogonal to the coordinate axes. The proof of (i), Theorem 5 will be based on 
the following lemma. 

oo 

Lemma 6. Let Vo, 17 1 . . . .  be integers with v , > n +  1Vn>0  and ~ 2-u(~"-")= oo. 
I f  D is a subset of RN satisfying the condition o 

Vn>OVQ, e91 3Q*e91~ : (Q*cQ,/xQ*c~D=_O) 
then 2 (D) = O. 
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Proof. We may assume that D ~ Qo for some Qo e 9lo. Put 91o = {Q. e 91.: Q. c Qo}. 
Define a sequence {A.}.>__ o of pairwise disjoint sets by 

Ao=Q~, 

A.=U{Q*:Q.~91~ n>l, 

n 

where we have put A . = U A  i. Let r. denote the number of Q.~91o with 
o 

Q. c~ A._ 1 =0;  then A. is a union of r .  disjoint cubes from 91o. The set A. consists 
o of r o + r 1 + . . .  + r. cubes; notice that a cube in 91. + 1 contains at most one of these 

cubes and that every cube in 9l o intersects A.. 
n - 1  

Put B. = Qo\A.. Then 2 (D) < 2 (B.) = 2 (Bo) [ I  2 (B i + 1)/2 (Bi). We now obtain 
0 

2 (D) =< 2 (B o) I~I 2 (B. +1)/~" (Bn) 
0 

=2(Bo) I~I (2Bn-2An+I)/2B n 
0 
oo 

= ' ~ ( B o )  H (1 - - r n +  1 2-uv"+'/RB.). 
o 

Denote by M. the number of QnE91 ~ such that Q. is not contained in A.. 
Clearly, r. + 1 = ( 2N - 1) M.;  employing this and the inequality 2 B. < M. 2- u. we 
find 

2 (D)< 2(B0)f i  (1 - ( 2  N-  1) 2 -N. 2 -N( . . . .  -(.+1,)) 
0 

and this infinite product is zero-divergent by assumption. _3 

For the proof of (i) as well as for the proof of (ii), Theorem 5 we find it con- 
venient to write t / in the form 

i.e. we we define f by 

t/(8)= 6. f( log 1/8); 6>0 ,  

f(x)=eXtl(e-X); - o o < x < o o .  

1 

f satisfies 0 < f < l .  The assumption 5a-(~+l)t/(a)NdS=oe is equivalent to 
oo O 

~ f(x) N dx = oo. Due to the fact that t/is nondecreasing, f does not oscillate very 

much; therefore, the condition 5f(x)Ndx=oe is equivalent to f(a+nb)=oo 
O 0 

where a is any real number and b any positive real number. 

Proof of (i), Theorem 5. Let D be any subset of/~N satisfying the condition: 

Vx~D VS>O 3y~S[x,c~]: S(y, tl(6))~D= ~. 

We shall prove that 2(D)=0 (assuming S~ oo). 
0 
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For n > 0 denote by v. the integer uniquely determined by the requirements 

2 ~"_-<r/(3.2-("+~))/]/N<2 ~.+1. 

Elementary manipulations shows that v ,>  n+  3 Vn>0 and that 

2 -u(v" ")>(N -}- 3 . 2  5)u Z f ( l o g ~ 6 + n  log 2) u, 
0 0 

from which it follows that ~ 2 -N(~"-")= m. 
0 

To see that we can apply Lemma 6, we consider an n > 0 and a Q, e 9l,. Denote 
by q, the cube with same center as Q, and with volume )~(q,)=2 -2N. ~(Q.). If 
q, c~ D=~, Q, contains a cube from 91,+3 disjoint with D and since v n > n+  3 we 
can then find Q*e91~. with Q* c Q, and Q* n D=~3. Now consider the other alter- 
native q,c~D@~. Choose xeq,  c~D and then choose yeS[x,  3-2 -("+4)] such that 
S(y,q(3.2-("+4)))c~D=~. Since 3.2-("+4)+t1(3.2 {"+4))<3 . 2-{"+3), we see 
that S(y, rl(3.2-("+4)))cQ,. Elementary considerations shows that S(y,t/(3- 
2-("+4))) contains a cube Q. e91~,, clearly, Q, c Q ,  and Q, c~O=O. We can now 
apply Lemma 6 and find that 2(D)= 0. 

oo 

Proof of (ii), Theorem 5. Since S f(x) dx < oo we can choose a positive integer 
0 

n o such that ~ {2 ] / ~  f(log(2"+"~ u < 1. 

0 

Choose Q,oe91,o and put 91o = {Q, e91.: Q c Q,o} for n>  n o. Define real numbers 
b,; n>n o by 

b, = 2 -"+1 ] fN f(log(2"/]/N)). 

For n>n o and Q,e91 ~ let Q* denote the cube with same center as Q, and with 
2(Q*)=b,N(note that b,<2 "). Define sets B,; n>n o by B ,=  U {Q*: Qn e91~ and 
consider the set 

D=Q,o\ U B,. 
n>=no 

W e h a v e 2 ( D ) > 2 - u " ~  and from the definition of the b.'s and the 
no 

choice of n o it follows that 2 (D)> 0. 

For n>n o put (6., r/.)=(�89 2-",2Zb.) and then define the function t/* by 

t/* (c5) = q,o for 6 > 6,0, 

r/* (6) = t/, for 6 , < 8 < 6 , _ 1 ;  n > n o +  1. 

From the construction of D it follows that 

VxeD YES>0 3yeS[x,  3]: S(y, t/*(6))c~ D=O. 

We now note that t / ,=t/(6._t);  n > n o + l .  It follows that tt(6)<tl*(6) for 6<6,0. 
If we put it' = t//~ tl (6,o), we see that 

VxeO V6>0 3yeS[x,  6]: S(y, tf(6))nD=O. 

We have already seen that 2 (D)> 0. _J 
17 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 14 
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