Skip to main content
Log in

Golgi cells, granule cells and synaptic glomeruli in the molecular layer of the rabbit cerebellar cortex

  • Published:
Journal of Neurocytology

Summary

A sheet of regularly spaced Golgi cells, each associated with a number of granule cells and with synaptic glomeruli, lies at mid-molecular layer level in the cerebellar cortex of adult rabbits. These ‘ectopic’ tissue units, which are markedly different from the surrounding molecular layer neuropil were studied by light and electron microscopy.

The Golgi cells display high AChE activity and are present in maximum density in the vermis of lobules IX and X and in the dorsal part of the paraflocculus. The cells are remarkably regularly spaced, constituting a lattice-like (possibly hexagonal or triagonal) array. In Golgi impregnations, their main dendrites extend perpendicular to the surface of the folium and issue horizontal branches. Their axons descend towards the granular layer. Parallel fibres synapse with their perikarya and main dendrites.

Up to 30 granule cells are associated with each Golgi cell; these lie predominantly deep to the Golgi cells in a periaxonal position. The synaptic glomeruli associated with the cells appear to be mossy fibre glomeruli similar to those of the granular layer. A somato-dendritic synapse between a molecular layer granule cell and a Purkyne cell dendritic spine was observed.

Golgi cells and associated granule cells are also present in the molecular layer of the hare cerebellar cortex. In addition prominent sub-pial clusters of undescended granule cells, were observed in the hare cerebellum.

We suggest that the molecular layer Golgi cells with their associated granule cells and synaptic glomeruli, cannot represent a simple developmental aberration. The tissue units they comprise are normal rather than ectopic elements of the molecular layer in rabbits and hares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, J. (1973) Experimental reorganization of the cerebellar cortex. III. Regeneration of the external germinal layer and granule cell ectopia.Journal of Comparative Neurology 149, 153–80.

    Google Scholar 

  • Altman, J. andAnderson, W. J. (1972) Experimental reorganization of cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged X-irradiation started at birth.Journal of Comparative Neurology 146, 355–406.

    Google Scholar 

  • Altman, J. andAnderson, W. J. (1973) Experimental reorganization of the cerebellar cortex. II. Effects of elimination of most microneurons with prolonged X-irradiation started at four days.Journal of Comparative Neurology 149, 123–52.

    Google Scholar 

  • Altman, J., Anderson, W. J. andWright, K. A. (1968) Differential radiosensitivity of stationary and migratory primitive cells in the brains of infant rats.Experimental Neurology 22, 52–74.

    Google Scholar 

  • Altman, J. andDas, G. D. (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation or cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions.Journal of Comparative Neurology 126, 337–90.

    Google Scholar 

  • Brodal, A. (1967) Anatomical studies of cerebellar fibre connections with special reference to problems of functional localization.Progress in Brain Research 25, 135–73.

    Google Scholar 

  • Brodal, A. andDrabløs, P. A. (1963) Two types of mossy fibre terminals in the cerebellum and their regional distribution.Journal of Comparative Neurology 121, 173–87.

    Google Scholar 

  • Brown, W. J. andPalay, S. L. (1972) Acetylcholinesterase activity in certain glomeruli and Golgi cells of the granular layer of the rat cerebellar cortex.Zeitschrift für Anatomie und Entwicklungs-Geschichte 137, 317–34.

    Google Scholar 

  • Cajal, S. R. Y. (1911)Histologie du Système Nerveux de l'Homme et des Vertébrés, Vol. 2. (Translated byAzoulay, L.). Madrid (1955): Consejo Superior de Investigaciones Cientificas.

    Google Scholar 

  • Cajal, S. R. Y. (1929)Studies on vertebrate neurogenesis. (Translated byGuth, L.) Reprinted Springfield, Illinois: 1960: Ch. C. Thomas.

    Google Scholar 

  • Cammermeyer, J. (1963) Similarities between oligodendrocyte and cerebellar granule cell nuclei in Mammalia and Aves.American Journal of Anatomy 112, 111–39.

    Google Scholar 

  • Chan-Palay, V. (1972) Arrested granule cells and their synapses with mossy fibers in the molecular layer of the cerebellar cortex.Zeitschrift für Anatomie und Entwicklungs-Geschichte 139, 11–20.

    Google Scholar 

  • Chan-Palay, V. andPalay, S. L. (1971a) Tendril and glomerular collaterals of climbing fibres in the granular layer of the rat's cerebellar cortex.Zeitschrift für Anatomie und Entwicklungs-Geschichte 133, 247–73.

    Google Scholar 

  • Chan-Palay, V. andPalay, S. L. (1971b) The synapseen marron between Golgi II neurons and mossy fibres in the rat's cerebellar cortex.Zeitschrift für Anatomie und Entwicklungs-Geschichte 133, 274–87.

    Google Scholar 

  • Csillík, B., Joó, F. andKása, P. (1963) Cholinesterase activity of archicerebellar mossy fibre apparatuses.Journal of Histochemistry and Cytochemistry 11, 113–14.

    Google Scholar 

  • Csillík, B., Joó, F., Kása, P., Tomity, I. andKálmán, G. (1964) Development of acetylcholinesterase-active structures in the rat archicerebellar cortex.Acta Biologica Academiae Scientiarum Hungaricae 15, 11–17.

    Google Scholar 

  • Del Cerro, M. P. andSnider, R. S. (1972) Studies on the developing cerebellum. II. The ultra-structure of the external granular layer.Journal of Comparative Neurology 144, 131–64.

    Google Scholar 

  • Del Cerro, M. P. andSnider, R. S. (1971) Ultrastructural changes in the developing cerebellum following cyclophosphamide administration.Anatomical Record 169, 305–6 (Abstract).

    Google Scholar 

  • Ebels, E. J. (1972) Studies on ectopic granule cells in the cerebellar cortex — with a hypothesis as to their aetiology and pathogenesis.Acta Neuropathologica (Berlin) 21, 117–27.

    Google Scholar 

  • Eccles, J. C., Ito, M. andSzentágothai, J. (1967)The cerebellum as a neuronal machine. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Estable, C. (1923) Notes sur la structure comparative de l'écorce cérébelleuse, et dérivées physiologiques possibles.Trabajos del Laboratorio de investigaciones biologicas de la Universidad de Madrid 21, 169–256.

    Google Scholar 

  • Feldman, M. L. andPeters, A. (1972) Intranuclear rods and sheets in rat cochlear nucleus.Journal of Neurocytology 1, 109–27.

    Google Scholar 

  • Fox, C. A., Hillman, D. E., Siegesmund, K. A. andDutta, C. R. (1967) The primate cerebellar cortex: A Golgi and electron microscopic study.Progress in Brain Research 25, 174–225.

    Google Scholar 

  • Gray, E. G. (1961) The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations.Journal of Anatomy (London) 95, 345–56.

    Google Scholar 

  • Halata, Z. andLange, W. (1973) Tubulöse Formationen in Zisternen des Ergastoplasma in der Glia der Kleinhirnrinde beim Javaner-Affen (Macaca cynomolgus).Acta Neuropathologica (Berlin) 24, 340–4.

    Google Scholar 

  • Hámori, J. (1969) Development of synaptic organization in the partially agranular and in the transneuronally atrophied cerebellar cortex. InNeurobiology of cerebellar evolution and development, (edited byLlinás, R.). pp. 845–58. Chicago: Institute for Biomedical Research, American Medical Association Education Research Foundation.

    Google Scholar 

  • Herndon, R. M. (1964) The fine structure of the rat cerebellum. II. Stellate neurons, granule cells and glia.Journal of Cell Biology 23, 277–93.

    Google Scholar 

  • Herndon, R. M., Margolis, G. andKilham, L. (1971) The synaptic organization of the malformed cerebellum induced by perinatal infection with the feline panleukopenia virus (PLV). II. The Purkinje cell and its afferents.Journal of Neuropathology and Experimental Neurology 30, 557–70.

    Google Scholar 

  • Hicks, S. P. andD'amato, C. J. (1961) How to design and build abnormal brains using radiation during development. InDisorders of the Developing Nervous System, (edited byFields, W. S. andDesmond, M. M.). Springfield, Illinois: Ch. C. Thomas.

    Google Scholar 

  • Jakob, A. (1928) Das Kleinhirn. InHandbuch der mikroskopischen Anatomie des Menschen, Vol. 4, (edited byVon Möllendorff, W.). Berlin: Springer Verlag.

    Google Scholar 

  • Karnovsky, M. J. andRoots, L. (1964) A ‘direct’ coloring thiocholine method for cholinesterases.Journal of Histochemistry and Cytochemistry 12, 219–21.

    Google Scholar 

  • Karnovsky, M. J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy.Journal of Cell Biology 27, 137–8 A.

    Google Scholar 

  • Kása, P. (1969) Electron histochemical evidence of different types of mossy fibre endings in the cerebellar cortex.Experientia 25, 740–1.

    Google Scholar 

  • Kilham, L. andMargolis, G. (1966) Viral etiology of spontaneous ataxia of cats.American Journal of Pathology 48, 991–1011.

    Google Scholar 

  • Koelle, G. B. (1954) The histochemical localization of cholinesterase in the central nervous system of the rat.Journal of Comparative Neurology 100, 211–35.

    Google Scholar 

  • Korogodina, J. V., Nesterenko, V. S. andDubrovina, V. M. (1969) Über die Wirkung ionisierender Strahlen auf die sich entwicklende Kleinhirnrinde der Ratten.Radiobiologia-Radiotherapia 10, 227–40.

    Google Scholar 

  • Langman, J. andShimada, M. (1970) Developmental abnormalities of the cerebellum caused by postnatal treatment with 5-fluorodeoxynoidine.Teratology 3, 204 (Abstract).

    Google Scholar 

  • Larramendi, L. M. H. (1969) Analysis of synaptogenesis in the cerebellum of the mouse. InNeurobiology of cerebellar evolution and development (edited byLlinás, R.) pp. 803–43. Chicago: American Medical Association, Education & Research Foundation.

    Google Scholar 

  • Larramendi, L. M. H. (1970) Morphological characteristics of extrinsic and intrinsic nerve terminals and their synapses in the cerebellar cortex of the mouse. InThe Cerebellum in Health and Disease (edited byFields, W. S. andWillis, W. D. Jr.) pp. 63–110. St. Louis: Warren H. Green. London: Adam Hilger.

    Google Scholar 

  • Larsell, O. (1962)Anatomy of the cerebellum. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Lewis, P. R., Pine, A. B. andShute, C. C. D. (1965) The electron-microscopic distribution of cholinesterase in rat brain.Journal of Physiology (London) 181, 15P.

    Google Scholar 

  • Llinás, R., Hillman, D. E. andPrecht, W. (1973) Neuronal circuit reorganization in mammalian agranular cerebellar cortex.Journal of Neurobiology 4, 69–94.

    Google Scholar 

  • Margolis, G. andKilham, L. (1968) In pursuit of an ataxic hamster, or virus-induced cerebellar hypoplasia. InThe Central Nervous System. International Academy of Pathology Monograph no. 9, pp. 157–83. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Margolis, G. andKilham, L. (1970) Cerebellar ontogenetic patterns: Key to a virus code. InThe Cerebellum in Health and Disease, (edited byFields, W. S. andWillis, W. D. Jr.) pp. 353–79. St. Louis: Warren H. Green. London: Adam Hilger.

    Google Scholar 

  • Martínez-Rodriguez, R. (1967) Cholinesterases et monoamine-oxidase dans le système nerveux central: Recherche histochimique.Acta Histochemica 27, 172–91.

    Google Scholar 

  • Miale, I. L. andSidman, R. L. (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum.Experimental Neurology 4, 277–96.

    Google Scholar 

  • Mugnaini, E. andForstrønen, P. F. (1967) Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo.Zeitschrift für Zellforschung und mikroskopische Anatomie 77, 115–43.

    Google Scholar 

  • Nathanson, N., Cole, G. A. andVan Der Loos, H. (1969) Heterotopic cerebellar granule cells following administration of cyclophosphamide to suckling rats.Brain Research 15, 532–6.

    Google Scholar 

  • Nixon, M. andWhiteley, D. (1972)The Oxford Book of Vertebrates, pp. 138–40. Oxford University Press.

  • Palay, S. L., Mcgee-Russell, S. M., Gordon, S. andGrillo, M. A. (1962) Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide.Journal of Cell Biology 12, 385–410.

    Google Scholar 

  • Palkovits, M., Magyar, P. andSzentagothai, J. (1971) Quantitative histological analysis of the cerebellar cortex in the rat. II. Cell numbers and densities in the granular layer.Brain Research 3, 15–30.

    Google Scholar 

  • Pařízek, J. (1968) The deafferentated paraflocculus as an experimental neuroanatomical model. (In Czech.) Československáfysiologie 17, 277 (Abstract).

    Google Scholar 

  • Pařízek, J. (1969) Histochemistry of Golgi neurons in the molecular layer of the rabbit cerebellar cortex. (In Czech.) Československáfysiologie 18, 302–3 (Abstract).

    Google Scholar 

  • Phemister, R. D., Shively, J. N. andYoung, S. (1969a) The effects of gamma irradiation on the postnatally developing canine cerebellar cortex. I. Effects of single sublethal exposures.Journal of Neuropathology and Experimental Neurology 28, 119–27.

    Google Scholar 

  • Phemister, R. D., Shively, J. N. andYoung, S. (1969b) The effects of gamma radiation on the postnatally developing canine cerebellar cortex. II. Sequential histogenesis of radiation-induced changes.Journal of Neuropathology and Experimental Neurology 28, 128–37.

    Google Scholar 

  • Rakic, P. (1970) Histogenesis of corticallayers in human cerebellum, particularly the lamina dissecans.Journal of Comparative Neurology 139, 473–500.

    Google Scholar 

  • Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopic study inMacacus rhesus.Journal of Comparative Neurology 141, 283–312.

    Google Scholar 

  • Rakic, P. (1973) Kinetics of proliferation and latency between final cell division and onset of differentiation of cerebellar stellate and basket neurons.Journal of Comparative Neurology 147, 523–46.

    Google Scholar 

  • Schroeder, A. H. (1929) Die Gliaarchitektonik des menschlichen Klinhirns.Journal für Psychologie und Neurologie (Leipzig) 38, 234–57.

    Google Scholar 

  • Scott, T. G. (1963) A unique pattern of localization within the cerebellum.Nature (London) 200, 793.

    Google Scholar 

  • Shimada, M. andLangman, J. (1970) Repair of the external granular layer after postnatal treatment with 5-fluorodeoxyuridine.American Journal of Anatomy 129, 247–60.

    Google Scholar 

  • Shute, C. C. D. andLewis, P. R. (1965) Cholinesterase-containing pathways of the hindbrain: afferent cerebellar and centrifugal cochlear fibres.Nature (London) 205, 242–6.

    Google Scholar 

  • Sidman, R. L. (1968) Development of interneuronal connections in brains of mutant mice. InPhysiological and Biochemical Aspects of Nervous Integration (edited byCarlson, F. D.). New Jersey: Prentice-Hall.

    Google Scholar 

  • Sosa, J. M. (1933) Heterotopia neuronal e hipocitomorfosis de la neuronas de Purkinje del cerebelo.Archivas de la Sociedad de Biologla de Montevideo 5, 196–203.

    Google Scholar 

  • Sosa, J. M., Palacios, E. andDe Sosa, H. M. S. (1971) Heterotopic cerebellar granule cells inside the plexiform layer.Acta Anatomica 80, 91–8.

    Google Scholar 

  • Sotelo, C. (1967) Cerebellar neuroglia: morphological and histochemical aspects.Progress in Brain Research 25, 226–50.

    Google Scholar 

  • Spaček, J. andPařízer, J. (1969) Identification of periaxonal cells of Golgi neurons in the molecular layer of the rabbit cerebellar cortex. (In Czech).Československá fysiologie 18, 306–7 (Abstract).

    Google Scholar 

  • Spačer, J. (1973) A simple method for the selection of specific small areas of C.N.S. tissue for electron microscopy.Stain Technology, in press.

  • Szentágothai, J. andHámori, J. (1969) Growth and differentiation of synaptic structures under circumstances of deprivation of function and of distant connections. InCellular Dynamics of the Neuron, (edited byBarondes, S. H.) pp. 301–320. New York, London: Academic Press.

    Google Scholar 

  • Uchizono, K. (1969) Analysis of interneurons based on their synaptic organization in the cerebellar cortex of the cat.Archivum Histologicumjaponicum 30, 329–51.

    Google Scholar 

  • Voogd, J. (1967) Comparative aspects of the structure and fibre connections of the mammalian cerebellum.Progress in Brain Research 25, 94–134.

    Google Scholar 

  • Wiest, W. D. andHallervorden, J. (1958) Migrations hemmung in Gross- und Kleinhirn.Deutsche Zeitschrift für Nervenheilkunde 178, 224–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spačer, J., Pařízek, J. & Lieberman, A.R. Golgi cells, granule cells and synaptic glomeruli in the molecular layer of the rabbit cerebellar cortex. J Neurocytol 2, 407–428 (1973). https://doi.org/10.1007/BF01103798

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01103798

Keywords

Navigation