Skip to main content
Log in

Responses ofHelix pomatia to anoxia: Changes of solute activity and other properties of the haemolymph

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1)

    The following variables were measured in the haemolymph ofHelix pomatia, during periods of anoxia lasting up to 45 h and during recovery in air after 24 h of anoxia:d-lactate, succinate, propionate, acetate, Na+, K+, Ca2+, Mg2+, Cl, protein, total osmolarity.

  2. 2)

    d-lactate and succinate appear in the haemolymph immediately after the onset of anoxia and may reach concentrations of 60 and 40 mM, respectively. In the period 10 to 30 h following the onset of anoxia the two endproducts accumulate in the haemolymph at approximately the same rate. Propionate is not formed. Acetate may occur in the liver but its concentration is unrelated to the duration of anaerobiosis.

  3. 3)

    Complete recovery after 24 h of anoxia takes a further 24 h. Changes in the concentration ofd-lactate and succinate suggest that these two end-products are metabolized in the liver.

  4. 4)

    No significant changes of Na+, Cl and protein occur during anoxia, suggesting that haemolymph volume remains more or less constant. However, the concentration of K+ in the haemolymph increases up to 3-fold.

  5. 5)

    Ca2+ increases at a rate which corresponds to the rise ofd-lactate and succinate concentrations. Mg2+ shows only a modest increase and remains constant after 10 h of anoxia.

  6. 6)

    Solute activity during anoxia increases initially, from an average of 160 to 270–280 mOsm, and then drops to approximately 220 mOsm. After 40 h of anoxia the difference between solute activity and concentration of all measured solutes amounts to approximately 160 mM.

  7. 7)

    In the haemolymph of anaerobic snails the activity of Ca2+ is reduced by up to 60% but this is not sufficient to account for the reduction of total solute activity.

  8. 8)

    In a buffer system resembling the haemolymph of anaerobic snails (containing 50 mM NaCl, 60 mM Ca2+, 60 mMd-lactate, 40 mM succinate, pH 6.9) the haemocyanin ofH. pomatia displays a negative Bohr shift (Δlogp50/ΔpH-0.14) with respect to aerobic haemolymph (pH 7.8) over the whole\(P_{O_2 } \) range considered. Cooperativity is identical under both conditions.

  9. 9)

    It is concluded that none of the speculations so far advanced concerning mechanisms which might control the flow of metabolites along the major pathways of anaerobiosis, can completely explain the responses ofH. pomatia to anoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  • Brix O, Lykkeboe G, Johansen K (1979) Reversed Bohr and Root shifts in haemocyanin of the marine prosobranch,Buccinum undatum: Adaptation to a periodically hypoxic habitat. J Comp Physiol 129:97–103

    Google Scholar 

  • Brown EB, Goott B (1963) Intracellular hydrogen ion changes and potassium movement. Am J Physiol 204:765–770

    PubMed  Google Scholar 

  • Burton RF (1965) Sodium, potassium, and magnesium in the blood of the snail,Helix pomatia L. Physiol Zool 38:335–342

    Google Scholar 

  • Burton RF (1965) Buffers in the blood of the snail,Helix pomatia L. Comp Biochem Physiol 29:919–930

    Google Scholar 

  • Burton RF (1976) Calcium metabolism and acid-base balance inHelix pomatia. In: Davies PS (ed) Perspectives in experimental biology. Pergamon Press, Oxford New York, pp 7–16

    Google Scholar 

  • Burton RF (1977) Haemolymph calcium inHelix pomatia: Effects of EGTA, ganglion extracts, ecdysterone, cyclic AMP and ionophore A 23187. Comp Biochem Physiol 57C:135–137

    Google Scholar 

  • Burton RF, Jaufeerally FR (1976) The mobilization of calcium and bicarbonate by raised concentration of potassium in the haemolymph of the snail,Helix pomatia. J Exp Biol 64:603–614

    PubMed  Google Scholar 

  • Cannan RK, Kibrick A (1938) Complex formation between carboxylic acids and divalent metal cations. J Biol Chem 124:2314–2320

    Google Scholar 

  • Dexheimer L (1951) Beiträge zum Kalkstoffwechsel der Weinbergschnecke (Helix pomatia L.). Zool Jahrb Abt Allg Zool Physiol Tiere 63:129–152

    Google Scholar 

  • Dotterweich H, Elssner E (1935) Die Mobilisierung des Schalenkalkes und die Reaktionsregulation der Muscheln (Anodonta cygnea). Biol Zentralbl 55:138–163

    Google Scholar 

  • Dugal LP (1939) The use of calcareous shells to buffer the products of anaerobic glycolysis inVenus mercenaria. J Cell Comp Physiol 13:235–251

    Google Scholar 

  • Ebberink RHM, DeZwaan A, Wijsman TCM (1976) Regulation of the phosphoenolpyruvate branchpoint by the adenylate energy charge inMytilus edulis. Biochem Soc Trans 4:444–447

    PubMed  Google Scholar 

  • Gäde G, Wilps H, Kluytmans JHFM, Zwaan A de (1975) Glycogen degradation and endproducts of anaerobic metabolism in the fresh water bivalveAnodonta cygnea. J Comp Physiol 104:79–85

    Google Scholar 

  • Gawehn K, Bergmeyer HU (1974) D[(−)-Lactat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim/Bergstraße, pp 1538–1541

    Google Scholar 

  • Hochachka PW, Mustafa T,(1972) Invertebrate facultative anaerobiosis. Science 178:1056–1060

    PubMed  Google Scholar 

  • Hoffmann KH, Mustafa T, Jørgensen JB (1979) Role of pyruvate kinase, phosphoenolpyruvate carboxykinase, malic enzyme and lactate dehydrogenase in anaerobic energy metabolism ofTubifex sp. J Comp Physiol 130:337–345

    Google Scholar 

  • Holwerda DA, Zwaan A de (1973) Kinetic and molecular characteristics of allosteric pyruvate kinase from muscle tissue of the sea musselMytilus edulis L.. Biochim Biophys Acta 276:296–306

    Google Scholar 

  • Johnston W, James TW, Barber AA (1967) Oxygen binding characterstics of lobster haemocyanin and its subunits. Comp Biochem Physiol 22:261–271

    PubMed  Google Scholar 

  • Klotz IM, Schlesinger AH, Tietze F (1948) Comparison of the binding ability of haemocyanin and serum albumin for organic ions. Biol Bull 94:40–44

    Google Scholar 

  • Kluytmans JH, Veenhof PR, Zwaan A de (1975) Anaerobic production of volatile fatty acids in the sea musselMytilus edulis L. J comp Physiol 104:71–78

    Google Scholar 

  • Konings WN, Van Diel R, Van Bruggen EFJ, Gruber M (1969) Structure and properties of haemocyanins. V. Binding of oxygen and copper inHelix pomatia haemocyanin. Biochim Biophys Acta 94:55–66

    Google Scholar 

  • Mangum CP (1980) Respiratory function of the haemocyanins. Am Zool 20:19–38

    Google Scholar 

  • Mangum CP, Lykkeboe G (1979) The influence of inorganic ions and pH on oxygenation properties of the blood in the gastropod molluscBusycon canaliculatum. J Exp Zool 207:417–430

    Google Scholar 

  • Mustafa T, Hochachka PW (1973) Enzymes in facultative anaerobiosis of molluscs — III. Phosphoenolpyruvate carboxy kinase and its role in aerobic-anaerobic transition. Comp Biochem Physiol 45B:657–667

    Google Scholar 

  • Schöttler U (1979) On the anaerobic metabolism of three species ofNereis (Annelida). Mar Ecol Progr Ser 1:249–254

    Google Scholar 

  • Schöttler U, Schroff G (1976) Untersuchungen zum anaeroben Glykogenabbau beiTubifex tubifex M. J Comp Physiol 108:243–254

    Google Scholar 

  • Spoek GL, Bakker H, Wolvekamp HP (1964) Experiments on the haemocyanin-oxygen equilibrium of the blood of the edible snail (Helix pomatia L.). Comp Biochem Physiol 12:209–221

    PubMed  Google Scholar 

  • Tilgner-Peter A (1957) Jahreszeitliche und klimatische Schwankungen im Calcium- und Phosphat-Gehalt des Blutes vonHelix pomatia L. Zool Jahrb Abt Allg Zool Physiol Tiere 67:365–372

    Google Scholar 

  • Vannoppen-Ver Eecke T, Lontie R (1973) The effect of alkaline earth ions on the cooperativity of the oxygenation ofHelix pomatia haemocyanin. Comp Biochem Physiol 45B:945–954

    Google Scholar 

  • Wardle CS (1978) Non-release of lactic acid from anaerobic swimming muscle of plaicePleuronectes platessa L.: a stress reaction. J Exp Biol 77:141–156

    PubMed  Google Scholar 

  • Wieser W (1978) The initial stage of anaerobic metabolism in the snailHelix pomatia L. FEBS Lett 95:375–378

    PubMed  Google Scholar 

  • Wieser W, Schuster M (1975) The relationship between water content, activity and free amino acids inHelix pomatia L.. J Comp Physiol 98:169–181

    Google Scholar 

  • Wijsman TCM (1976) Adenosine phosphates and energy charge in different tissues ofMytilus edulis L. under aerobic and anaerobic conditions. J Comp Physiol 107:129–140

    Google Scholar 

  • Williamson JR (1974) Succinat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie. Weinheim/Bergstraße, pp 1661–1666

    Google Scholar 

  • Wilps H, Zebe E (1976) The end-products of anaerobic carbohydrate metabolism in the larvae ofChironomus thummi thummi. J Comp Physiol 112:263–272

    Google Scholar 

  • Wolvekamp HP (1932) Untersuchungen über den Sauerstofftransport durch Blutpigmente beiHelix, Rana undPlanorbis. Z Vergl Physiol 16:1–38

    Google Scholar 

  • Wolvekamp HP (1961) The evolution of oxygen transport. In: Macfarlane RG, Robb-Smith AHT (eds) Function of the blood. Academic Press, New York London, pp 1–72

    Google Scholar 

  • Zwaan A de (1977) Anaerobic energy metabolism in bivalve molluscs. Oceanogr Mar Biol Ann Rev 15:103–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieser, W. Responses ofHelix pomatia to anoxia: Changes of solute activity and other properties of the haemolymph. J Comp Physiol B 141, 503–509 (1981). https://doi.org/10.1007/BF01101473

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01101473

Keywords

Navigation