Skip to main content
Log in

Classification of solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The theory of reaction-diffusion systems in a neighborhood of a bifurcation point is considered. The basic types of space-time ordering, diffusion chaos in such systems, and sequences of bifurcations leading to complication of solutions are studied. A detailed discussion is given of a hierarchy of simplified models (one- and two-dimensional mappings, systems of ordinary differential equations, and others) which make it possible to carry out a qualitative analysis of the problem studied in the case of small regions. A number of generalizations of the equations studied and the simplest types of ordering in the two-dimensional case are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. A. Andronov, A. A. Vitt, and S. Khaikin, The Theory of Oscillations [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  2. A. A. Andronov, Jr. and A. L. Fabrikant, “Landau damping, wind waves, and whistle,” in: Nonlinear Waves [in Russian], Nauka, Moscow (1979), pp. 68–104.

    Google Scholar 

  3. I. S. Aranson, A. V. Gaponov-Grekhov, and M. I. Rabinovich, “Development of chaos in ensembles of dynamical structures,” Zh. Éksp. Teor. Fiz.,89, No. 1 (7), 92–105 (1985).

    Google Scholar 

  4. V. I. Arnol'd, “Supplementary Chapters of the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  5. V. I. Arnol'd, Catastrophe Theory [in Russian], Moscow State Univ. (1983).

  6. V. S. Afraimovich, V. V. Bykov, and L. P. Shil'nikov, “On attracting sets of the type of the Lorenz attractor,” Tr. Mosk. Mat. Obshch.,44, 150–212 (1982).

    Google Scholar 

  7. T. S. Akhromeeva, S. P. Kurdyumov, and G. G. Malinetskii, Paradoxes of the World of Nonstationary Structures [in Russian], Znanie, Moscow (1985).

    Google Scholar 

  8. T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, and A. A. Samarskii, “On classification of two-component systems in a neighborhood of a bifurcation point,” Dokl. AN SSSR,279, No. 3, 591–595 (1984).

    Google Scholar 

  9. T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, and A. A. Samarskii, “On diffusion chaos in nonlinear dissipative systems,” Dokl. AN SSSR,279, No. 5, 1091–1096 (1984).

    Google Scholar 

  10. T. S. Akhromeeva and G. G. Malinetskii, “Oscillatory processes in nonlinear dissipative media. On some simplified models,” Preprint, Inst. Prikl. Mat. AN SSSR, No. 53 (1982).

  11. T. S. Akhromeeva and G. G. Malinetskii, “Two-component systems in a neighborhood of a bifurcation point. The behavior of solutions in small regions,” Preprint, Inst. Prikl. Mat. AN SSSR, No. 29 (1983).

  12. T. S. Akhromeeva and G. G. Malinetskii, “On new properties of nonlinear dissipative systems,” Preprint, Inst. Prikl. Mat. AN SSSR, No. 118 (1983).

  13. T. S. Akhromeeva and G. G. Malinetskii, “On diffusion chaos,” Preprint No. 140, Inst. Prikl. Mat. AN SSSR (1983).

  14. T. S. Akhromeeva and G. G. Malinetskii, “On symmetric solutions of the Kuramoto-Tsuzuki equation,” Differents. Uravn.,20, No. 7, 1281–1283 (1984).

    Google Scholar 

  15. T. S. Akhromeeva and G. G. Malinetskii, “The simplest types of order in two-dimensional dissipative systems,” Preprint No. 112, Inst. Prikl. Mat. AN SSSR (1984).

  16. T. S. Akhromeeva and G. G. Malinetskii, “The simplest types of order in open dissipative systems,” Differents. Uravn.,21, No. 4, 657–668 (1985).

    Google Scholar 

  17. T. S. Akhromeeva and G. G. Malinetskii, “On a strange attractor in a problem of synergetics,” Preprint No. 89, Inst. Prikl. Mat. AN SSSR (1985).

  18. T. S. Akhromeeva and G. G. Malinetskii, “On nonuniqueness of a class of self-similar solutions of the Kuramoto-Tsuzuki equation,” Differents. Uravn.,21, No. 9, 1577–1582 (1985).

    Google Scholar 

  19. T. S. Akhromeeva and G. G. Malinetskii, “Periodic regimes in nonlinear dissipative systems near a bifurcation point,” Zh. Vychisl. Mat. Mat. Fiz.,25, No. 9, 1314–1326 (1985).

    Google Scholar 

  20. A. V. Babin and M. I. Vishik, “Attractors of evolution partial differential equations and estimates of their dimension,” Usp. Mat. Nauk,38, No. 4, 133–187 (1983).

    Google Scholar 

  21. B. N. Belintsev, “Dissipative structures and problems of biological morphogenesis,” Usp. Fiz. Nauk,141, No. 1, 55–101 (1983).

    Google Scholar 

  22. V. S. Berman and Yu. A. Danilov, “On group properties of the generalized Landau-Ginzburg equation,” Dokl. AN SSSR,258, No. 1, 67–70 (1981).

    Google Scholar 

  23. L. A. Bunimovich and Ya. G. Sinai, “Stochasticity of the attractor in the Lorenz model,” in: Nonlinear Waves [in Russian], Nauka, Moscow (1979), pp. 212–226.

    Google Scholar 

  24. V. A. Vasil'ev, Yu. M. Romanovskii, and V. G. Yakhno, “Self-wave processes in distributed kinetic systems,” Usp. Fiz. Nauk,128, No. 4, 625–666 (1979).

    Google Scholar 

  25. K. Vidal, “Dynamic instabilities observable in the Belousov-Zhabotinskii relation,” in: Sinergetika [Russian translation], Mir, Moscow (1984), pp. 109–125.

    Google Scholar 

  26. R. Williams, “The structure of the Lorenz attractor,” in: Strange Attractors [Russian translation], Mir, Moscow (1981), pp. 58–72.

    Google Scholar 

  27. E. B. Vul, Ya. G. Cinai, and K. M. Khanin, “Feigenbaum's universality and the thermodynamic formalism,” Usp. Mat. Nauk,39, No. 3, 3–37 (1984).

    Google Scholar 

  28. V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, “Localization of heat in nonlinear media,” Differents. Uravn.,17, No. 10, 1826–1841 (1981).

    Google Scholar 

  29. R. Gimor, Applied Theory of Catastrophes [Russian translation], Vols. I, II, Mir, Moscow (1984).

    Google Scholar 

  30. G. G. Elenin, S. P. Kurdyumov, and A. A. Samarskii, “Nonstationary dissipative structures in a nonlinear, heat-conducting medium,” Zh. Vychisl. Mat. Mat. Fiz.,23, No. 3, 19–28 (1983).

    Google Scholar 

  31. A. M. Zhabotinskii, Concentrated Self-Oscillations [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  32. N. V. Zmitrenko and S. P. Kurdyumov, “The N- and S-regimes of compression of a finite mass of plasma and features of regimes with peaking,” Zh. Prikl. Mekh. Tekh., No. 1, 3–23 (1977).

    Google Scholar 

  33. N. V. Zmitrenko and A. P. Mikhailov, Thermal Inertia [in Russian], Znanie, Moscow (1982).

    Google Scholar 

  34. V. S. Zykov, Modeling Wave Processes in Excitable Media [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  35. V. S. Zykov and O. A. Morozova, “Cycloid circulation of spiral waves in various models of excitable media,” Pushchino, Texts of Reports of the All-Union Seminar “Mathematical and Computational Methods in Biology” (1985), pp. 76–77.

  36. G. R. Ivanitskii, V. I. Krinskii, and E. E. Sel'kov, Mathematical Biophysics of a Cell [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  37. A. N. Ivanova and N. E. Maganova, “On the nonlocal character of the behavior of dissipative structures,” Zh. Vychisl. Mat. Mat. Fiz.,24, No. 8, 1217–1230 (1984).

    Google Scholar 

  38. J. Yorke and E. Yorke, “Metastable chaos: passage to stable chaotic behavior in the Lorenz model,” in: Strange Attractors [Russian translation], Mir, Moscow (1981), pp. 193–212.

    Google Scholar 

  39. J. Ioss and D. Joseph, Elementary Theory of Stability and Bifurcations [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  40. B. B. Kadomtsev, Collective Phenomena in a Plasma [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  41. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, “Investigation of the diffusion equation combined with the growth of the quantity of matter and its application to a biological problem,” Mosk. Gos. Univ., Sec. A,1, No. 6, 1–27 (1937).

    Google Scholar 

  42. S. P. Kurdyumov, “Eigenfunctions of combustion of a nonlinear medium and constructive laws of constructing its organization,” in: Modern Problems of Mathematical Physics and Computational Mathematics [in Russian], Nauka, Moscow (1982), pp. 217–243.

    Google Scholar 

  43. S. P. Kurdyumov, E. S. Kurkina, A. B. Potapov, and A. A. Samarskii, “The architecture of multidimensional thermal structures,” Dokl. AN SSSR,274, No. 5, 1071–1075 (1984).

    Google Scholar 

  44. S. P. Kurdyumov and G. G. Malinetskii, Synergetics — The Theory of Self-Organization. Ideas, Methods, Prospects [in Russian], Znanie, Moscow (1983).

    Google Scholar 

  45. S. P. Kurdyumov, G. G. Malinetskii, Yu. A. Poveshchenko, Yu. P. Popov, and A. A. Samarskii, “Dissipative structures in trigger media,” Differents. Uravn.,17, No. 10, 1875–1886 (1981).

    Google Scholar 

  46. O. E. Lanford, “Strange attractors and turbulence,” in: Hydrodynamic Instabilities and Passage to Turbulence [Russian translation], Mir, Moscow (1984), pp. 22–46.

    Google Scholar 

  47. E. Lorenz, “Deterministic nonperiodic flow,” in: Strange Attractors [Russian translation], Mir, Moscow (1981), pp. 88–116.

    Google Scholar 

  48. J. Marri, Nonlinear Differential Equations in Biology. Lectures on Models [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  49. J. Marsden and M. MacCracken, Bifurcation of Cycle Creation and Its Applications [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  50. J. Marsden, “Attempts to establish a relation between the Navier-Stokes equations and turbulence,” in: Strange Attractors [Russian translation], Mir, Moscow (1981), pp. 7–20.

    Google Scholar 

  51. N. N. Moiseev, Mathematics Poses and Experiment [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  52. G. Nikolis and I. Prigozhin, Self-Organization in Nonequilibiurm Systems [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  53. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  54. Ya. B. Pesin, “The general theory of smooth hyperbolic dynamical systems,” Itogi Nauki i Tekh. VINITI, Sovr. Probl. Matem. Fundam. Napravleniya (1985), pp. 123–172.

  55. M. I. Rabinovich and A. L. Fabrikant, “Stochastic automodulation of waves in nonequilibrium media,” Zh. Éksp. Teor. Fiz.,77, No. 2 (8), 617–629 (1979).

    Google Scholar 

  56. Yu. M. Romanovskii, N. V. Stepanova, and D. S. Chernavskii, Mathematical Biophysics [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  57. D. Ruelle and F. Takens, “On the nature of turbulence,” in: Strange Attractors [Russian translation], Mir, Moscow (1981), pp. 117–151.

    Google Scholar 

  58. A. A. Samarskii, The Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  59. A. A. Samarskii, “Mathematical modeling and computational experiment,” Vestn. AN SSSR, No. 5, 38–49 (1979).

    Google Scholar 

  60. A. A. Samarskii, G. G. Elenin, N. V. Zmitrenko, and S. P. Kurdyumov, “Combustion of a nonlinear medium in the form of complex structures,” Dokl. AN SSSR,237, No. 6, 1330–1333 (1977).

    Google Scholar 

  61. A. A. Samarskii, N. V. Zmitrenko, S. P. Kurdyumov, and A. P. Mikhailov, “Thermal structures and the fundamental length in media with nonlinear thermal conductivity and a volumetric heat source,” Dokl. AN SSSR,227, No. 2, 321–324 (1976).

    Google Scholar 

  62. A. A. Samarskii and S. P. Kurdyumov, “Nonlinear processes in a dense plasma and their role in the problem of laser UTS,” Proc. of the Department of Wave and Gas Dynamics of the Mechanics-Mathematics Faculty of Moscow State Univ., No. 3, 19–28 (1979).

    Google Scholar 

  63. A. A. Samarskii, T. S. Akhromeeva, and G. G. Malinetskii, “Nonlinear phenomena and computational experiment,” Vestn. AN SSSR, No. 9, 64–77 (1985).

    Google Scholar 

  64. A. A. Samarskii and Yu. P. Popov, Difference Schemes of Gas Dynamics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  65. Ya. G. Sinai, “Stochasticity of dynamical systems,” in: Nonlinear Waves [in Russian], Nauka, Moscow (1979), pp. 192–211.

    Google Scholar 

  66. E. Scott, Waves in Active and Nonlinear Media in Application to Electronics [in Russian], Sovet-skoe Radio, Moscow (1977).

    Google Scholar 

  67. A. N. Tikhonov, A. A. Samarskii, L. A. Zaklyaz'minskii, P. P. Volosevich, L. M. Degtyarev, S. P. Kurdyumov, Yu. P. Popov, V. S. Sokolov, and A. P. Favorskii, “The nonlinear effect of formation of a self-sustaining, high-temperature electrically conducting layer of gas in nonstationary processes of magnetohydrodynamics,” Dokl. AN SSSR,173, No. 4, 808–811 (1967).

    Google Scholar 

  68. G. Whitham, Linear and Nonlinear Waves [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  69. O. Phillips, “Interaction of waves — evolution of the idea,” in: Modern Hydrodynamics. Successes and Problems [Russian translation], Mir, Moscow (1984), pp. 297–314.

    Google Scholar 

  70. H. Haken, Synergetics [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  71. A. N. Sharkovskii, “Coexistence of cycles of a continuous transformation of the line into itself,” Ukr. Mat. Zh.,16, No. 1, 61–71 (1964).

    Google Scholar 

  72. J. P. Eckmann, “Passage to turbulence in dissipative dynamical systems,” in: Synergetics [Russian translation], Mir, Moscow (1984), pp. 190–219.

    Google Scholar 

  73. M. V. Yakobson, “Ergodic theory of one-dimensional mappings,” Modern Problems of Mathematics. Fundamental Directions. Itogi Nauki i Tekh. VINITI, Vol. 2 (1985), pp. 204–226.

    Google Scholar 

  74. G. Benettin, L. Calgani, A. Giorgilli, and J. M. Strelcin, “Lyapunov characteristic exponents for smooth dynamical systems: a method for computing all of them,” Mechanica,15, No. 1, 9–30 (1980).

    Google Scholar 

  75. K. J. Blow and N. J. Doran, “Global and local chaos in the pumped nonlinear Schrödinger equation,” Phys. Rev. Lett.,52, No. 7, 526–529 (1984).

    Google Scholar 

  76. A. Brandstarter, J. Swift, H. L. Swinney, A. Wolf, J. D. Farmer, E. Jen. Crutchfield, “Low-dimensional chaos in a hydrodynamic system,” Phys. Rev. Lett.,51, No. 16, 1442–1445 (1983).

    Google Scholar 

  77. P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhauser, Basel-Boston-Stuttgart (1980).

    Google Scholar 

  78. J. D. Crawford and S. Omohundro, “On the global structure of period doubling flows,” Physica D,13, No. 1, 2, 161–180 (1984).

    Google Scholar 

  79. M. C. Cross and A. C. Newell, “Convection pattern in large aspect ratio systems,” Physica D,10, No. 3, 229–338 (1984).

    Google Scholar 

  80. R. J. Deissler, “Noise strained structure, intermittency and the Ginzburg-Landau equation,” J. Stat. Phys.,40, No. 3/4, 371–395 (1985).

    Google Scholar 

  81. J. D. Farmer, “Sensitive dependence on parameters in nonlinear dynamics,” Phys. Rev. Lett.,55, No. 4, 351–354 (1985).

    Google Scholar 

  82. J. D. Farmer, “Chaotic attractors of an infinite-dimensional system,” Physica D,4, No. 3, 366–393 (1982).

    Google Scholar 

  83. J. D. Farmer, E. Ott, and J. A. Yorke, “The dimension of chaotic attractors,” Physica D,1, No. 1, 2, 153–180 (1983).

    Google Scholar 

  84. M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations,” J. Stat. Phys.,19, No. 1, 25–52 (1978).

    Google Scholar 

  85. M. J. Feigenbaum, “The universal metric properties of nonlinear transformations,” J. Stat. Phys.,21, No. 6, 669–706 (1979).

    Google Scholar 

  86. A. Gierer and H. Meinhardt, “A theory of biological pattern formation,” Kybernetic, No. 12, 30–39 (1979).

    Google Scholar 

  87. P. Crassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D,9, No. 1, 2, 189–208 (1983).

    Google Scholar 

  88. C. Grebogy, E. Ott, and J. A. Yorke, “Crises, sudden changes in chaotic attractors and transient chaos,” Physica,7, No. 1, 2, 181–200 (1983).

    Google Scholar 

  89. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York-Berlin-Heidelberg (1983).

    Google Scholar 

  90. P. S. Hagan, “Spiral waves in reaction-diffusion equations,” SIAM J. Appl. Math.,42, No. 4, 762–786 (1982).

    Google Scholar 

  91. M. Henon, “On the numerical computation of Poincaré maps,” Physica D,5, No. 2, 3, 412–414 (1982).

    Google Scholar 

  92. L. M. Hocking and K. Stewartson, “On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance,” Proc. R. Soc. London A,326, 289–312 (1972).

    Google Scholar 

  93. M. V. Jakobson, “Absolutely continuous invariant measures for one-parameter families of one-dimensional maps,” Commun. Math. Phys.,81, No. 1, 39–88 (1981).

    Google Scholar 

  94. T. Kakutani, “Plasma waves in the long wave approximation,” Progr. Theor. Phys.,55, 97–119 (1974).

    Google Scholar 

  95. S. Koga, “Rotating spiral waves in reaction-diffusion systems,” Progr. Theor. Phys.,67, No. 1, 167–178 (1982).

    Google Scholar 

  96. S. Koga, “Schrödinger equation approach to rotating spiral waves in reaction-diffusion systems,” Progr. Theor. Phys.,67, No. 2, 454–463 (1982).

    Google Scholar 

  97. H. Koppell and L. N. Howard, “Plane wave solutions to reaction-diffusion equations,” Stud. Appl. Math.,52, No. 4, 291–328 (1973).

    Google Scholar 

  98. Y. Kuramoto, “Chemical waves and chemical turbulence,” in: Synergetics, A Workshop, Springer-Verlag, New York-Berlin-Heidelberg (1977), pp. 164–173.

    Google Scholar 

  99. Y. Kuramoto, “Diffusion-induced chaos in reaction systems,” Progr. Theor. Phys.,64, 346–367 (1978).

    Google Scholar 

  100. Y. Kuramoto, “Diffusion-induced chemical turbulence,” in: Dynamics of Synergetic Systems, Springer-Verlag, Berlin-Heidelberg-New York (1980), pp. 134–153.

    Google Scholar 

  101. Y. Kuramoto and S. Koga, “Turbulized rotating chemical waves,” Progr. Theor. Phys.,66, No. 3, 1081–1083 (1981).

    Google Scholar 

  102. Y. Kuramoto and T. Tsuzuki, “Reductive perturbation approach to chemical instabilities,” Progr. Theor. Phys.,52, No. 4, 1399–1401 (1974).

    Google Scholar 

  103. Y. Kuramoto and T. Tsuzuki, “On the formation of dissipative structures in reactiondiffusion systems,” Progr. Theor. Phys.,54, No. 3, 687–699 (1975).

    Google Scholar 

  104. Y. Kuramoto and T. Tsuzuki, “Persistant propagation of concentration waves in dissipative media far from thermal equilibrium,” Progr. Theor. Phys.,55, No. 2, 356–369 (1976).

    Google Scholar 

  105. Y. Kuramoto and T. Yamada, “Turbulent state in chemical reactions,” Progr. Theor. Phys.,56, No. 2, 679–681 (1976).

    Google Scholar 

  106. T. Y. Li and J. York, “Period three implies chaos,” Am. Math. Mon.,82, No. 10, 982–985 (1975).

    Google Scholar 

  107. E. N. Lorenz, The local structure of a chaotic attractor in four dimensions,” Physica D,13, No. 1, 2, 90–104 (1984).

    Google Scholar 

  108. V. S. L'vov and A. A. Predtechensky, “On Landau and stochastic attractor pictures in the problem of transition to turbulence,” Physica D,2, No. 1, 38–51 (1981).

    Google Scholar 

  109. H. T. Moon, P. Huerre, and L. G. Redekopp, “Transition to chaos in the Ginzburg-Landau equation,” Physica D,7, No. 1, 2, 135–150 (1983).

    Google Scholar 

  110. A. C. Newell and J. A. Whitehead, “Finite bandwidth, finite amplitude convection,” J. Fluid Mech.,38, 279–303 (1969).

    Google Scholar 

  111. A. Nitzan and P. Ortoleva, “Scaling and Ginzburg criteria for critical bifurcations in a nonequilibrium reacting system,” Phys. Rev. A,21, No. 5, 1735–1755 (1980).

    Google Scholar 

  112. J. C. Roux, “Experimental studies of bifurcations leading to chaos in the Belousof-Zhabotinsky reaction,” Physica D,7, No. 1, 2, 57–68 (1983).

    Google Scholar 

  113. D. A. Russell and E. Ott, “Chaotic (strange) and periodic behaviour in saturation by the oscillating two-stream instability,” Phys. Fluids,24, No. 11, 1976–1988 (1981).

    Google Scholar 

  114. C. Sparrow, “The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer-Verlag, New York-Heidelberg-Berlin (1982).

    Google Scholar 

  115. K. Stewartson and J. A. Stuart, “A nonlinear instability theory for a wave system in plane Poiseuille flow,” J. Fluid Mech.,48, Part 3, 529–545 (1971).

    Google Scholar 

  116. H. L. Swinney, “Observations of order and chaos in nonlinear systems,” Physica D,7, No. 1, 2, 3–15 (1983).

    Google Scholar 

  117. F. Takens, “Detecting strange attractors in turbulence,” in: Dynamical Systems and Turbulence, Warwick 1980, Springer-Verlag, Berlin-Heidelberg-New York (1980), pp. 366–381.

    Google Scholar 

  118. T. Taniuti, “Reductive perturbation method and far fields of wave equations,” Suppl. Progr. Theor. Phys.,55, 1–35 (1974).

    Google Scholar 

  119. K. Tomita and I. Tsuda, “Towards the interpretation of the global bifurcation structure of the Lorenz system,” Suppl. Progr. Theor. Phys.,69, 183–199 (1980).

    Google Scholar 

  120. A. Turing, “The chemical basis of morphogenesis,” Phil. Trans. R. Soc. London B,237, 37–72 (1952).

    Google Scholar 

  121. A. T. Winfree, “The geometry of biological time,” Springer-Verlag, Berlin-Heidelberg-New York (1980).

    Google Scholar 

  122. T. Yamada and Y. Karamoto, “A reduced model showing chemical turbulence,” Progr. Theor. Phys.,56, No. 2, 681–682 (1976).

    Google Scholar 

  123. T. Yamada and Y. Karamoto, “Breakdown of synchronized state in a self-oscillatory chemical reaction systems,” Progr. Theor. Phys.,60, No. 6, 1935–1936 (1978).

    Google Scholar 

  124. K. Yamafuji, K. Toko, J. Nitta, and K. Urahama, “Reductive perturbation approach to hard-mode instabilities of inverted-type bifurcations,” Progr. Theor. Phys.,66, No. 1, 143–153 (1981).

    Google Scholar 

  125. N. J. Zabusky, “Computational synergetics and mathematical innovation,” J. Computat. Phys.,43, No. 2, 195–249 (1981).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 28, 207–313, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhromeeva, T.S., Kurdyumov, S.P., Malinetskii, G.G. et al. Classification of solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point. J Math Sci 41, 1292–1356 (1988). https://doi.org/10.1007/BF01098786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01098786

Keywords

Navigation