Skip to main content
Log in

Rich dynamics caused by diffusion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is an awfully difficult task to design an efficient numerical method for bifurcation diagrams, the graphs of Lyapunov exponents, or the topological entropy about discrete dynamical systems by linear/nonlinear diffusion with the Direchlet/Neumann- boundary conditions. Until now there are less works concerned with such a problem. In this paper, we propose a scheme about bifurcating analysis in a series of discrete-time dynamical systems with linear/nonlinear diffusion terms under the periodic boundary conditions. The complexity of dynamical behaviors caused by the diffusion term are to be determined. Bifurcation diagrams are shown by numerical simulation and chaotic behavior (chaotic Turing patterns) is demonstrated by computing the largest Lyapunov exponent. Our theoretical model can give an interesting case study about the phenomenon: the individuals exhibit a very simple dynamics but the groups with linear/nonlinear coupling can own a complex dynamics including fluctuation, periodicity and even chaotic behavior. We find that diffusion can trigger chaotic behavior in the present system and there exist multiple Turing patterns. It is interesting as regular or chaotic patterns can be reported in this study. Chaotic orbits emerge when exploring further in the diffusion coefficient space, and such a behavior is entirely absent in the corresponding continuous time-space system. The method proposed in the present paper is innovative and the conclusion is novel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available in reasonable request.

References

  1. Bai, L., Zhang, G.: Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions. Appl. Math. Comput. 210, 321–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bunimovich, L.A., Lambert, A., Lima, R.: The emergence of coherent structures in coupled map lattices. J. Stat. Phys. 61, 253–262 (1990)

    Article  MathSciNet  Google Scholar 

  3. Cheng, R., Peng, M., et al.: Stability analysis and synchronization in discrete-time complex networks with delayed coupling. Chaos 23, 043108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barry Cooper, S., Leeuwen, J.V.: The chemical basis of morphogenesis. In: Barry Cooper, S., Leeuwen, J.V. (eds.) Alan Turing: His Work and Impact, pp. 683–764. Elsevier, Amsterdam (2013). https://doi.org/10.1016/B978-0-12-386980-7.50026-5

    Chapter  MATH  Google Scholar 

  5. Dieckmann, U., Law, R., Metz, A.: The Geometry of Ecological Interaction: Simplifying Spatial Complexity. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  6. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. John, H.: Philosophica, pp. 11–40. Emergence, Holland (1997)

    Google Scholar 

  8. Hoyle, R.: Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  9. Kaplan, J., Yorke, J.: Chaotic behavior of multidimensional difference equations. In: Peitgen, H.O., Walther, H.O. (eds.) Functional Differential Equations and Approximation of Fixed Points. Berlin, Springer (1979)

    Google Scholar 

  10. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer-Verlag, New York (2004)

    Book  MATH  Google Scholar 

  11. Medvinsky, A., Petrovskii, S., Tikhonova, I., Malchow, H., Li, B.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44, 311–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marotto, F.R.: Snap-Back Repellers Imply Chaos in \({\mathbb{R} }^{\mathbb{N} }\). J. Math. Anal. Appl. 63, 199–223 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meng, L., Li, X., Zhang, G.: Simple diffusion can support the pitchfork, the flip bifurcations, and the chaos. Commun. Nonlinear Sci. Numer. Simul. 53, 202–212 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Murray, J.D.: Mathematical biology, third ed, vol. 2. Mathematical Biology: I. An Introduction, Springer, New York, 2002. Mathematical Biology: II. Spatial Models and Biomedical Applications. Springer, New York, 2003

  15. Ranaa, S., Bhattacharyab, S., Samantac, S.: Spatiotemporal dynamics of Leslie–Gower predator-prey model with Allee effect on both populations. Math. Comput. Simul. 200, 32–49 (2022)

    Article  MathSciNet  Google Scholar 

  16. Segel, L.: Modeling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  17. Segel, L., Jackson, J.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972)

    Article  Google Scholar 

  18. Shi, Y., Yu, P.: Chaos induced by regular snap-back repellers. J. Math. Anal. Appl. 337, 1480–1494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. Ser. B 237, 37–72 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  20. Van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386(2–6), 29–222 (2003)

    Article  MATH  Google Scholar 

  21. Wang, W., Lin, Y., Zhang, L., Rao, F., Tan, Y.: Complex patterns in a predator-prey model with self and cross-diffusion. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2006–2015 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, X., Peng, M.: Rich dynamics in some discrete-time car-following models. Physica A 536, 120926 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, X., Peng, M.: Rich dynamics in some generalized difference equations. Discrete Cont. Dyn.-S 13(11), 3205–3212 (2020). https://doi.org/10.3934/dcdss.2020191

  24. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos[M]. Springer, New York (2003)

    MATH  Google Scholar 

  25. Xu, L., Zhang, G., et al.: Turing instability for a two-dimensional Logistic coupled map lattice. Phys. Lett. A 374, 3447–3450 (2010)

    Article  MATH  Google Scholar 

  26. Yao, S., Ma, Z., Cheng, Z.: Pattern formation of a diffusive predator-prey model with strong Allee effect and non-constant death rate. Phys. A 527, 121350 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, G., Zhang, R., Yan, Y.: The diffusion-driven instability and complexity for a single-handed discrete Fisher equation. Appl. Math. Comput. 371, 124946 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, G., et al.: Partial Difference Equation and Its Application. Science Press, Beijing (2018). ((In Chinese))

    Google Scholar 

Download references

Acknowledgements

The project was supported by (National Natural Science Foundation of China grant number 61977004 and 62173027 (M. Peng). The authors are greatly indebted to the reviewers for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshu Peng.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: \(M\psi =-\gamma \lambda _{kl}\psi \).

Proof

It follows by direct computation that

$$\begin{aligned}{} & {} -4\cos \frac{2(k-1)\pi }{s}\cos \frac{2(l-1)\pi }{t}\\{} & {} +\cos \frac{2(k-1)\pi }{s}\cos \frac{4(l-1)\pi }{t}\\{} & {} \quad +\cos \frac{2(k-1)\pi }{s}\cos \frac{2t(l-1)\pi }{t}\\{} & {} +\cos \frac{4(k-1)\pi }{s}\cos \frac{2(l-1)\pi }{t}\\{} & {} \quad +\cos \frac{2s(k-1)\pi }{s}\cos \frac{2(l-1)\pi }{t}\\{} & {} =-4\left( \sin ^2\frac{(k-1)\pi }{s}+\sin ^2\frac{(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{2(k-1)\pi }{s}\cos \frac{2(l-1)\pi }{t};\\{} & {} -4\cos \frac{2(k-1)\pi }{s}\cos \frac{(l-1)2t\pi }{t}\\{} & {} + \cos \frac{2(k-1)\pi }{s}\cos \frac{(l-1)2(t-1)\pi }{t}\\{} & {} +\cos \frac{2s(k-1)\pi }{s}\cos \frac{(l-1)2t\pi }{t}\\{} & {} +\cos \frac{2(k-1)\pi }{s}\cos \frac{(l-1)2\pi }{t}\\{} & {} \quad +\cos \frac{4(k-1)\pi }{s}\cos \frac{(l-1)2t\pi }{t}\\{} & {} =-4\left( \sin ^2\frac{(k-1)\pi }{s}+\sin ^2\frac{(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{2(k-1)\pi }{s}\cos \frac{l-1)2t\pi }{t};\\{} & {} -4\cos \frac{2(k-1)\pi }{s}\cos \frac{(l-1)2t\pi }{t}\\{} & {} + \cos \frac{2s(k-1)\pi }{s}\cos \frac{2(l-1)(t-1)\pi }{t}\\{} & {} \quad +\cos \frac{2s(k-1)\pi }{s}\cos \frac{2(l-1)\pi }{t}\\{} & {} +\cos \frac{2(s-1)(k-1)\pi }{s}\cos \frac{2(l-1)t\pi }{2t}\\{} & {} \quad +\cos \frac{2(k-1)\pi }{s}\cos \frac{(l-1)2t\pi }{t}\\{} & {} =-4\left( \sin ^2\frac{(k-1)\pi }{s}+\sin ^2\frac{(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{2s(k-1)\pi }{s}\cos \frac{(l-1)2t\pi }{t}\\{} & {} -4\cos \frac{(k-1)2s\pi }{s}\cos \frac{2(l-1)\pi }{t}\\{} & {} +\cos \frac{(k-1)2s\pi }{s}\cos \frac{4(l-1)\pi }{t}\\{} & {} \quad +\cos \frac{2(k-1)(s-1)\pi }{s}\cos \frac{2(l-1)\pi }{t}\\{} & {} +\cos \frac{2(k-1)\pi }{s}\cos \frac{2(l-1)\pi }{t}\\{} & {} \quad +\cos \frac{2(k-1)s\pi }{s}\cos \frac{2t(l-1)\pi }{t}\\{} & {} =-4\left( \sin ^2\frac{(k-1)\pi }{s}+\sin ^2\frac{(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{2(k-1)s\pi }{s}\cos \frac{2(l-1)\pi }{t} \end{aligned}$$

and for \(j=2:t-1\),

$$\begin{aligned}{} & {} -4\cos \frac{2(k-1)\pi }{s}\cos \frac{2(l-1)j\pi }{t}\\{} & {} +\cos \frac{2(k-1)\pi }{s}\cos \frac{2(l-1)(j-1)\pi }{t}\\{} & {} \quad +\cos \frac{2(k-1)\pi }{s}\cos \frac{2(l-1)(j+1)\pi }{t}\\{} & {} + \cos \frac{4(k-1)\pi }{s}\cos \frac{2(l-1)j\pi }{t}\\{} & {} \quad +\cos \frac{2s(k-1)\pi }{s}\cos \frac{2(l-1)j\pi }{t}\\{} & {} =-4\left( \sin ^2\frac{(k-1)\pi }{s}+\sin ^2\frac{(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{2(k-1)\pi }{s}\cos \frac{2(l-1)j\pi }{t};\\{} & {} -4\cos \frac{(k-1)2s\pi }{s}\cos \frac{2(l-1)j\pi }{t}\\{} & {} +\cos \frac{(k-1)2s\pi }{s}\cos \frac{2(l-1)(j-1)\pi }{t}\\{} & {} \quad +\cos \frac{(k-1)2s\pi }{s}\cos \frac{2(l-1)(j+1)\pi }{t}\\{} & {} +\cos \frac{(k-1)2(s-1)\pi }{s}\cos \frac{2(l-1)j\pi }{t}\\{} & {} \quad +\cos \frac{(k-1)2\pi }{s}\cos \frac{2(l-1)j\pi }{t}\\{} & {} =-4\left( \sin ^2\frac{2(k-1)\pi }{s}+\sin ^2\frac{(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{(k-1)2s\pi }{s}\cos \frac{2(l-1)j\pi }{t}; \end{aligned}$$

and for \(i=2:s-1\),

$$\begin{aligned}{} & {} -4\cos \frac{2(k-1)i\pi }{s}\cos \frac{2(l-1)\pi }{t}\\ {}{} & {} +\cos \frac{2(k-1)i\pi }{s}\cos \frac{4(l-1)\pi }{t}\\{} & {} \quad +\cos \frac{2(k-1)i\pi }{s}\cos \frac{2t(l-1)\pi }{t} \\ {}{} & {} \cos \frac{2(k-1)(i+1)\pi }{s}\cos \frac{2(l-1)\pi }{t}\\{} & {} \quad +\cos \frac{2(k-1)(i-1)\pi }{s}\cos \frac{2(l-1)\pi }{t}\\ {}{} & {} =-4\left( \sin ^2\frac{2(k-1)\pi }{s}+\sin ^2\frac{2(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{2(k-1)i\pi }{s}\cos \frac{2(l-1)\pi }{t};\\ {}{} & {} -4\cos \frac{(k-1)2i\pi }{s}\cos \frac{(l-1)2t\pi }{2t}\\ {}{} & {} +\cos \frac{(k-1)2i\pi }{s}\cos \frac{(l-1)2(t-1)\pi }{t}\\{} & {} \quad +\cos \frac{(k-1)2i\pi }{s}\cos \frac{(l-1)2\pi }{t} \\ {}{} & {} + \cos \frac{(k-1)2(i-1)\pi }{s}\cos \frac{(l-1)2t\pi }{t}\\{} & {} \quad +\cos \frac{(k-1)2(i+1)\pi }{s}\cos \frac{(l-1)2t\pi }{2t}\\ {}{} & {} =-4\left( \sin ^2\frac{(k-1)\pi }{s}+\sin ^2\frac{(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{(k-1)2i\pi }{s}\cos \frac{(l-1)2t\pi }{t}; \end{aligned}$$

and for \(i=2:s-1\), \(j=2:t-1\)

$$\begin{aligned}{} & {} -4\cos \frac{2(k-1)i\pi }{s}\cos \frac{2(l-1)j\pi }{t}\\ {}{} & {} + \cos \frac{2(k-1)i\pi }{s}\cos \frac{2(l-1)(j+1)\pi }{t}\\{} & {} \quad +\cos \frac{2(k-1)i\pi }{s}\cos \frac{2(l-1)(j-1)\pi }{t}\\ {}{} & {} +\cos \frac{2(k-1)(i+1)\pi }{s}\cos \frac{2(l-1)j\pi }{t}\\{} & {} \quad + \cos \frac{2(k-1)(i-1)\pi }{s}\cos \frac{2(l-1)j\pi }{t} \\ {}{} & {} =-4\left( \sin ^2\frac{(k-1)\pi }{s}+\sin ^2\frac{(l-1)\pi }{t}\right) \\{} & {} \quad \cos \frac{2(k-1)i\pi }{s}\cos \frac{2(l-1)j\pi }{t}. \end{aligned}$$

\(\square \)

Appendix II: The existence of a standard orthogonal basis for A or discrete periodic boundary problems (2.2).

The orthogonality of \(\{\psi ^{(k,l)}, k=1,\ldots , s, l=1,\ldots t\}\) comes from direct computation for t and t are both odd. Obviously \(\psi ^{kl}\not =0\) because of \(\psi ^{kl}_{st}=1\). Then, by Appendix I, \(\{\psi ^{(k,l)}, k=1,\ldots , s, l=1,\ldots t\}\) is a orthogonal basis for A or discrete periodic boundary problems (2.2). The unitization is listed as follows

$$\begin{aligned}{} & {} e^{(1,1)}_{i,j}=\frac{1}{\sqrt{st}}\psi ^{(1,1)}=\frac{1}{\sqrt{st}}(1,1,\ldots ,1),\\ {}{} & {} e^{(k,1)}_{i,j}=\sqrt{\frac{2}{st}}\psi ^{k1},\ \text{ for } k\in {{\mathbb {N}}}(2,s),\\ {}{} & {} e^{(1,l)}_{i,j}=\sqrt{\frac{2}{st}}\psi ^{1l},\ \text{ for } l\in {{\mathbb {N}}}(2,t), \end{aligned}$$

and

$$\begin{aligned} e^{(k,l)}_{i,j}=\frac{2}{\sqrt{st}}\psi ^{kl},\ \text{ for } k\in {{\mathbb {N}}}(2,s), l\in {{\mathbb {N}}}(2,t). \end{aligned}$$

Now we prove that

$$\begin{aligned} \sum ^s_{i=1}\cos ^2\frac{2(k-1)i\pi }{s}={\left\{ \begin{array}{ll} s/2, &{}\cos \frac{4(k-1)\pi }{s}\not =1\\ s, &{}\cos \frac{4(k-1)\pi }{s}=1.\end{array}\right. }\end{aligned}$$

Since \(\sum ^s_{i=1}\cos ^2\frac{2(k-1)i\pi }{s}=s/2+1/2\sum ^s_{i=1}\cos \frac{4(k-1)i\pi }{s}\), it holds true if

$$\begin{aligned} U^*\triangleq \sum ^s_{i=1}\cos ^2\frac{4(k-1)i\pi }{s}=0 \text{ or } 1. \end{aligned}$$

Set \(\beta =\frac{4(k-1)\pi }{s}\). Then one can obtain

$$\begin{aligned}{} & {} 2\cos \beta \sum ^s_{i=1}\cos ^2\frac{2(k-1)i\pi }{s}\\ {}{} & {} \quad =\sum ^s_{i=1} (\cos \frac{4(k-1)(i+1)\pi }{s}+\cos \frac{4(k-1)(i-1)\pi }{s}. \end{aligned}$$

It follows directly from \(\cos \frac{4(k-1)(s+1)\pi }{s}=\cos \frac{4(k-1)\pi }{s}\), \(\cos \frac{4(k-1)(1-1)\pi }{s}=\cos \frac{4(k-1)s\pi }{s}\) that \(2\cos \beta U^*=2U^*\). Eventually we find that \(U^*=0\) for \(\cos \beta \not =1\). If \(\cos \beta =1\), it is natural that \(\sum ^s_{i=1}\cos ^2\frac{2(k-1)i\pi }{s}=s\).

Next we are interested in the orthogonality of \(\{\psi ^{kl}\}\). At first, it is interesting about the following result

$$\begin{aligned}{} & {} \sum ^s_{i=1}\cos \frac{2(k-1)i\pi }{s}\cos \frac{2(l-1)i\pi }{s}\\ {}{} & {} \quad =\left\{ \begin{array}{cl} 0, &{} \cos \frac{2(k+l-2)\pi }{s}\not =1;\\ s/2, &{}\cos \frac{2(k+l-2)\pi }{s} =1 \text{ and } \cos \frac{4(k-1)\pi }{s}\not =1;\\ s &{}\cos \frac{2(k+l-2)\pi }{s} =1 \text{ and } \cos \frac{4(k-1)\pi }{s} =1.\end{array}\right. \end{aligned}$$

Please note that \(\cos \frac{2(k-l)\pi }{s}\not =1\). The proof follows from the same technique as above.

Therefore the vector set \(\{\psi ^{kl}\}\) is a orthogonal basis of \({{\mathbb {R}}}^{s\times t}\) for s or t is an odd integer, otherwise it is invalid. It is linearly dependent because, among them, there are at least two same vectors related to the same eigenvalue with the multiplicity more than 1, for instance \(k=s^*-1, l=t^*-1\), \(k=s^*+3, l=t^*+3\) with \(s=2\,s^*\ge 6\) and \(t=2t^*\ge 6\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., Yi, X. & Cheng, R. Rich dynamics caused by diffusion. Nonlinear Dyn 111, 9201–9213 (2023). https://doi.org/10.1007/s11071-023-08307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08307-y

Keywords

Navigation