Skip to main content
Log in

On the experimental data and applied models of turbulent heat transfer in near-wall flows

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

The data on the vector of the one-point correlation 〈u i t〉 characterizing turbulent heat transfer are considered using the Reynolds approach to the turbulence description. The turbulent heat transfer from a given heat source (sink) is determined by the dynamic turbulence structure. With this taken into consideration, only the problem statements and obtained results are discussed in which both the thermal and dynamic characteristics of the liquid flow are discussed simultaneously using a unified approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Blom and D. A. Vries, in: Heat and Mass Transfer, Vol. 1 (1968), pp. 147–154.

  2. A. J. Reynolds, Int. J. Heat Mass Transfer,18, 1055–1069 (1975).

    Google Scholar 

  3. M. M. Gibson, in: Proc. Int. Seminar after Z. Zaric, Dubrovnik (1988).

  4. I. P. Ginzburg, Resistance and Heat Transfer Theory [in Russian], Leningrad (1970).

  5. A. Malhotra and S. S. Kang, Int. J. Heat Mass Transfer,27, 2158 (1984).

    Google Scholar 

  6. N. K. Myong, N. Kasagi, and M. Hirata, JSME, Ser. 2,32, No. 4, 613–621 (1989).

    Google Scholar 

  7. M. Jischa and H. B. Rieke, Int. J. Heat Mass Transfer,22, 1547 (1979).

    Google Scholar 

  8. A. Pyadishyus and A. Shlanchyauskas, Turbulent Heat Transfer in Near-Wall Layers [in Russian], Vilnius (1987).

  9. M. Hishida, Y. Nagano, and M. Tagawa, in: Proc. 8th Int. Heat Transfer Conference (1986), Vol. 3, pp. 925–930.

  10. W. M. Kays and M. E. Grawford, Convective Heat and Mass Transfer, McGraw-Hill (1980).

  11. E. P. Dyban and E. Ya. Epik, Heat Mass Transfer and Hydrodynamics of Turbulized Flows [in Russian], Kiev (1985).

  12. M. Elena and R. Dumas, in: Proc. 6th Int. Heat Transfer Conference, Toronto, FC(b)-11 (1978), Vol. 5, pp. 239–244.

  13. L. Fulachier and R. Dumas, ibid. in: Proc. 6th Int. Heat Transfer Conference, Toronto, FC(b)-10, 233–238.

  14. P. S. Roganov, V. P. Zabolotskii, E. V. Shishov, and A. I. Leontiev, Int. J. Heat Mass Transfer,27, No. 8, 1251–1259 (1984).

    Google Scholar 

  15. A. F. Polyakov (ed.), Turbulent Heat Transfer Involving Mixed Convection in Vertical Tubes [in Russian], Moscow (1989).

  16. B. S. Petukhov and A. F. Polyakov, Heat Transfer Involving Mixed Turbulent Convection [in Russian], Moscow (1986).

  17. B. S. Petukhov, A. F. Polyakov, and Yu. V. Tsypulev, in: Turbulent Shear Flows (1983), Vol. 2, pp. 166–177.

  18. H. Maekawa, V. Kawada, M. Kobayashi, and H. Yamaguchi, Int. J. Heat Mass Transfer,34, No. 8, 1991–1998 (1991).

    Google Scholar 

  19. D. E. Wroblewski and P. A. Eibeck, Int. J. Heat Mass Transfer,34, No. 7, 1617–1631 (1991).

    Google Scholar 

  20. D. K. Bisset, R. A. Antonia, and M. R. Raupach, Physics of Fluids A, Fluid Dynamics,3, No. 9, 2220–2228 (1991).

    Google Scholar 

  21. N. Bagheri, C. J. Strataridakis, and B. R. Write, AIAA J., No. 1, 35–42 (1992).

    Google Scholar 

Download references

Authors

Additional information

Institute of High Temperatures, Russian Academy of Sciences, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 64, No. 6, pp. 689–697, June, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, A.F. On the experimental data and applied models of turbulent heat transfer in near-wall flows. J Eng Phys Thermophys 64, 552–559 (1993). https://doi.org/10.1007/BF01089955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01089955

Keywords

Navigation