Skip to main content
Log in

Rf plasma processing of silica

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The processing of silica in an rf plasma was studied with a new experimental system, the process being carried out entirely in the vapor phase. SiO and Si were obtained by either thermal decomposition of SiO2 or reduction by H2. No other reducing material (which, like C, may become a contaminant) was used. The products were collected along the reactor length and analyzed afterward. Temperatures in the reaction zone were measured spectroscopically. The high reaction rates occurring in the gas phase did compensate for the low residence times. A diffusional model for the buildup of solid reaction products is discussed. Vapor phase plasma reduction of silica with hydrogen proved to be more effective than thermal decomposition and nuch more effective than heterogeneous processing. The efficiency evaluation was made on the laboratory-scale level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c dSiO :

SiO content, % by wt

c tSi :

Total Si content, % by wt

cSiO e2 :

Experimental SiO2 content, % by wt

cSiO t2 :

“Theoretical” SiO2 content, % by wt

D :

Species diffusivity, cm2 · sec−1

F :

Rate of species deposition, mol · cm−2 · sec−1

MSiO2 :

Molar flow of SiO2, mmol · sec−1

n :

Species concentration, cm−3

P :

Anode power, kW

r :

Reaction radius, cm

R * :

Radius of quartz tube, cm

T :

Temperature, K

T av :

Average temperature, K

USiO t2 :

Total extent of SiO2 decomposition, %

V aAr :

Molar flow of axial Ar, mmol · sec−1

V pAr :

Molar flow of peripheral Ar, mmol · sec−1

VH2 :

Molar flow of H2, mmol · sec−1

y :

Molar fraction

Z :

Position of a plane normal to the plasma axis down the lower turn of rf coil, cm

γ:

Molar ratio of SiO over SiO2 in deposit

References

  1. H. G. Herlitz,Environ. Sci. Technol. 20, 1102 (1986).

    Google Scholar 

  2. S. L. Camacho, ISPC-7, Eindhoven, The Netherlands (July 1985), Paper No. B-1-2, p. 188.

  3. K. C. Hsu, K. Etemadi, and E. Pfender,J. Appl. Phys. 54, 1293 (1983).

    Google Scholar 

  4. P. Meubus and A. Huczko,Plasma Chem. Plasma Process. 6, 159 (1986).

    Google Scholar 

  5. H. L. Schick,Chem. Rev. 60, 331 (1960).

    Google Scholar 

  6. M. I. Goldshleger and A. E. Merzhanov,Dokl. AN SSSR 269, 1107 (1983).

    Google Scholar 

  7. P. D. Johnston,Comb. Flame 18, 373 (1972).

    Google Scholar 

  8. I. S. Burov and A. L. Mosse,3rd Symp. Plasma Chem. Moscow, USSR 2, 79 (1979).

    Google Scholar 

  9. D. M. Coldwell,High Temp. Sci. 8, 309 (1976).

    Google Scholar 

  10. J. Amouroux, J.-L. Codron, and D. Morvan,Ann. Chim. Fr. 3, 59 (1978).

    Google Scholar 

  11. I. D. Kulagin, V. K. Lyubimov, K. G. Marin, B. A. Sakharov, and L. M. Sorokin,Fiz. Khim. Obrab. Mat. 2, 36 (1967).

    Google Scholar 

  12. Ya. P. Grabis, N. B. Sveke, G. L. Tsabulye, and T. N. Miller,Izv. AN Latv. SSSR Ser. Khim. 6, 651 (1982).

    Google Scholar 

  13. M. Ya. Ivanov, T. N. Kupryaskhina, O. B. Tsybina, and A. M. Bessarabov,Khim. Prom. (Moscow) 1, 34 (1985).

    Google Scholar 

  14. D. M. Coldwell and R. A. Roques,J. Electrochem. Soc. 124, 1986 (1977).

    Google Scholar 

  15. R. Ouellette, M. Barbier, and P. Cheremisinoff,Low Temperature Plasma Technology Application, Ann Arbor Science, Ann Arbor, Mich. (1980), p. 110.

    Google Scholar 

  16. A. Szymanski, A. Podgorski, and A. Huczko,Z. Phys. Chem. Leipzig 260, 1193 (1979).

    Google Scholar 

  17. W. Kukielko, Ph.D. thesis, Wroclaw, Poland (1977).

  18. J. Jurewicz,Plasmachemistry, 2nd Symposium, Czestochowa, Poland (1978), p. 141.

  19. JANAF Thermochemical Tables, NSRDS-NBS 37, U.S. Department of Commerce, 1971.

  20. Y. Pang Tsui and H. Y. Cheh,Plasma Chem. Plasma Process. 2, 387 (1982).

    Google Scholar 

  21. B. Ozturk and R. J. Fruehan,Metal. Trans. B 16B, 801 (1985).

    Google Scholar 

  22. A. Huczko and P. Meubus,Metal. Trans. B 19B, 927 (1988).

    Google Scholar 

  23. D. Beruto, L. Barco, and G. Belleri,Ceram. Int. 1, 87 (1975).

    Google Scholar 

  24. W. Kukielko, J. Doniec, J. Jurewicz, and A. Czernichowski,Plasmachemistry, 1st Symposium, Warsaw, Poland (1971), p. 316.

  25. A. Bianconi and R. S. Bauer,Surf. Sci. 99, 76 (1980).

    Google Scholar 

  26. E. A. Gulbransen,React. Kinet. Heterogen. Chem. Syst., Proc. Int. Meet. Soc. Chim. Phys. 25th, 1974 (1975), p. 86.

  27. W. A. Pliskin and H. S. Lehman,J. Electrochem. Soc. 112, 1013 (1965).

    Google Scholar 

  28. J. A. Nuth and B. Donn,J. Chem. Phys. 77, 2639 (1982).

    Google Scholar 

  29. V. K. Krukovskii, V. V. Lebedev, E. A. Kolobova, and V. B. Rubinchik,Khim. Tverd. Topl. 1, 143 (1979).

    Google Scholar 

  30. B. A. Sakharov, K. G. Marin, W. K. Lyubimov, D. L. Fedorova, I. D. Kulagin, and L. M. Sorokin,Izv. AN SSSR Neorg. Mat. 4, 2035 (1968).

    Google Scholar 

  31. A. Huczko and P. Meubus, ISPC-8, Tokyo (Aug. 1987), Vol. 4, p. 2099.

    Google Scholar 

  32. L. E. Howarth and W. G. Spitzer,J. Am. Ceram. Soc. 44, 26 (1961).

    Google Scholar 

  33. G. M. Kurdyumov, W. A. Molochko, and A. W. Chekynov,Izv. AN SSSR Neorg. Mat. 2, 1786 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huczko, A., Meubus, P. Rf plasma processing of silica. Plasma Chem Plasma Process 9, 371–386 (1989). https://doi.org/10.1007/BF01083673

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01083673

Key Words

Navigation