Skip to main content
Log in

The thermal reactions of muscovite studied by high-resolution solid-state 29-Si and 27-AI NMR

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Studies of two muscovites of different iron contents, using solid-state NMR with magic-angle-spinning (MAS) combined with X-ray powder diffraction, thermal analysis and57Fe Mössbauer spectroscopy, suggest that dehydroxylation occurs by a homogeneous rather than an inhomogeneous mechanism, forming a dehydroxylate in which the aluminium is predominantly 5-coordinate. On further decomposition at about 1100° C, the tetrahedral layer and interlayer K+ form a feldspar-like phase similar to leucite (KAISi2O6), the remainder forming a spinel, which, contrary to previous suggestions, appears to contain little silicon. Further heating induces the formation of mullite (AI6Si2OP13), and, in the higher-iron sample, corundum (α-Al2O3), in addition to the feldspar-like phase. The presence of the iron impurity enhances the recrystallization reactions and promotes the conversion of mullite to corundum, which eventually becomes the sole aluminous product in the high-iron sample. In samples fired to higher temperatures, only the tetrahedral aluminium resonance is detectable by27AI NMR, probably because most of the iron is located in either the mullite or corundum phases, in which it broadens the octahedral aluminium resonance beyond detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Brett, K. J. D. Mackenzie andJ. H. Sharp,Quart. Revs. Chem. Soc. 24 (1970) 185.

    Google Scholar 

  2. J. P. Eberhart,Bull. Soc. Franc. Mineral. Crist. 86 (1963) 213.

    Google Scholar 

  3. S. Udagawa, K. Urabe andH. Hasu,Ganseki Kobutsu Kosho Gakkaishi 69 (1974) 381.

    Google Scholar 

  4. A. W. Nicol, “Clays and Clay Minerals”, in Proceedings of the 12th National Conference on Clays and Clay Minerals, Atlanta, 1963, edited by W. F. Bradley (Pergamon, Oxford, 1964) p. 11.

    Google Scholar 

  5. N. Sundius andA. M. Bystrom,Trans. Brit. Ceram. Soc. 52 (1953) 632.

    Google Scholar 

  6. G. W. Brindley, in “Progress in Ceramic Science, Vol. 3”, edited by J. E. Burke (Pergamon, Oxford, 1963) p. 1.

    Google Scholar 

  7. K. J. D. Mackenzie, I. W. M. Brown, R. H. Meinhold andM. E. Bowden,J. Amer. Ceram. Soc. 68 (1985) 266.

    Google Scholar 

  8. I. W. M. Brown, K. J. D. Mackenzie andR. H. Meinhold,J. Mater. Sci.

  9. R. C. Mackenzie (ed) in “The Differential Thermal Investigation of Clays” (Mineralogical Society Monograph, London, 1957) Ch. 6.

    Google Scholar 

  10. W. E. Cameron,Bull. Am. Ceram. Soc. 56 (1977) 1003.

    Google Scholar 

  11. A. Muan andC. L. Gee,J. Amer. Ceram. Soc. 39 (1956) 207.

    Google Scholar 

  12. I. W. M. Brown, K. J. D. Mackenzie, M. E. Bowden andR. H. Meinhold,ibid. 68 (1985) 298.

    Google Scholar 

  13. J. Sanz andJ. M. Serratosa,J. Amer. Chem. Soc.,106 (1984) 4790.

    Google Scholar 

  14. E. Lippmaa, M. Magi, A. Samosan, G. Engelhardt andA. R. Grimmer,ibid. 102 (1980) 4889.

    Google Scholar 

  15. R. A. Kinsey, R. J. Kirkpatrick, J. Hower, K. A. Smith andE. Oldfield,Amer. Mineral. 70 (1985) 537.

    Google Scholar 

  16. C. P. Herrero, J. Sanz andJ. M. Serratosa,J. Phys. C. Solid State Phys. 18 (1985) 13.

    Google Scholar 

  17. R. J. Kirkpatrick, R. A. Kinsey, K. A. Smith, D. M. Henderson andE. Oldfield,Amer. Mineral. 70 (1985) 106.

    Google Scholar 

  18. B. L. Sherriff andJ. S. Hartman,Can. Mineral. 23 (1985) 205.

    Google Scholar 

  19. E. W. Radoslovich,Acta Crystallogr. 13 (1960) 919.

    Google Scholar 

  20. N. Güven,Z. Krist. 134 (1971) 196.

    Google Scholar 

  21. S. M. Richardson andJ. W. Richardson,Amer. Mineral. 67 (1982) 69.

    Google Scholar 

  22. S. Motherwell, “PLUTO”, A Programme for Plotting Molecular and Crystal Structures” (University Chemical Library, Cambridge, England, 1976).

    Google Scholar 

  23. J. Sanz andJ. M. Serratosa,Clay Mineral. 19 (1984) 113.

    Google Scholar 

  24. P. J. Malden andR. E. Meads,Nature 215 (1967) 844.

    Google Scholar 

  25. L. H. Brwen, S. B. Weed andJ. G. Stevens,Amer. Mineral. 54 (1969) 72.

    Google Scholar 

  26. C. S. Hogg andR. E. Meads,Mineralog. Mag. 37 (1970) 606.

    Google Scholar 

  27. B. A. Goodman,Mineralog. Mag. 40 (1976) 513.

    Google Scholar 

  28. H. Annersten andU. Halenius,Amer. Mineral. 61 (1976) 1045.

    Google Scholar 

  29. T. Ericsson, R. Wappling andK. Punakivi,Geol. Foeren. Stockholm Foerh.,99 (1977) 229.

    Google Scholar 

  30. J. Finch, A. R. Gainsford andW. C. Tennant,Amer. Mineral. 67 (1982) 59.

    Google Scholar 

  31. C. M. Cardile, I. W. M. Brown andK. J. D. Mackenzie, submitted toJ. Mater. Sci. Lett. 22 (1987) 357.

    Google Scholar 

  32. I. W. M. Brown, K. J. D. Mackenzie andC. M. Cardile,J. Mater. Sci. Lett. 22 (1987) 535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackenzie, K.J.D., Brown, I.W.M., Cardile, C.M. et al. The thermal reactions of muscovite studied by high-resolution solid-state 29-Si and 27-AI NMR. J Mater Sci 22, 2645–2654 (1987). https://doi.org/10.1007/BF01082158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01082158

Keywords

Navigation