Skip to main content
Log in

The ophiolitic peridotites of the Western Alps: Record of the evolution of a small oceanic-type basin in the Mesozoic Tethys

Les péridotites ophiolitiques des Alpes occidentales: témoins de l'évolution d'un petit bassin de type oceanique dans la Téthys Mésozoique

  • Published:
Tschermaks mineralogische und petrographische Mitteilungen Aims and scope Submit manuscript

Summary

Among the ophiolitic peridotites upwelled during the opening of the small Mesozoic Tethys, two groups have been recognized in the sector of the Western Alps: a) EO ultramafics (Mt. Civrari and Monviso) which are very depleted in easily fusible elements and followed a very high temperature (starting from 1300°C) decompressional trajectory; b) LA (Lanzo) and WO (Tour Real) ultramafics which are less depleted, followed decompression at slightly lower temperature (< 1200 °C) and might represent sections of shallower subcontinental mantle. The peridotites are associated with magmatic sequences showing affinities with N-MORB. These sequences derive from partial melting processes which left residua similar to the EO peridotites, but probably different from the LA-WO peridotites. These evidences demonstrate that small oceanic-type basins like the Mesozoic western Tethys are associated with MORB-type magmatism, but include mantle sections recording different steps in the evolution of the basin. Moreover these Tethys-like basins closed a few tens of m.y. after opening and their formation seems to be controlled by active tectonism and by local perturbations of large scale geodynamic processes.

Résumé

Parmi les péridotites tectonitiques remontées dans la Téthys Mésozoique lors de son ouverture on reconnait dans le secteur des Alpes occidentales: a) des ultramafites appauvries en éléments incompatibles qui ont suivi une trajectoire décompressionale à tres haute température (1300 °C) (M. Civrari et Monviso: EO); b) des ultramafites moins appauvries qui ont suivi une trajectoire à plus basse température (< 1200 °C) et qui pourraient représenter des témoins de manteau sous-continental (Lanzo: LA; Tour Real: WO). Ces peridotites sont associées à des séries magmatiques à affinité de N-MORB. Les péridotites EO peuvent représenter les résidus de la fusion partielle qui a produit les séries magmatiques de type N-MORB, cela n'étant pas probablement possible pour les péridotites LA et WO. Bien que les séries magmatiques des petits bassins océaniques de la Tethys Mésozoique occidentale montrent en général des affinités MORB, les péridotites témoignent de differentes étapes d'évolution des bassins. De plus ces petits bassins ont été fermés quelques m.a. après leur ouverture et leur évolution semble liée à une tectonique tres active et à des perturbations locales des phénomènes géodynamiques à grande échelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbate, E., Bortolotti, V., Principi, G., 1980: Apennine ophiolites: a peculiar oceanic crust. Ofioliti5, 59–96.

    Google Scholar 

  • Anonymous, 1973: Penrose field conference on ophiolites. Geotimes17, 24–25.

  • Auzende, J. M., Polino, R., Lagabrielle, Y., Olivet, J. L., 1983: Considérations sur l'origine et la mise en place des ophiolites des Alpes occidentales: apport de la connaissance des structures océaniques. C.R. Acad. Sci. Paris296, 1527–1532.

    Google Scholar 

  • Barberi, F., Bonatti, E., Marinelli, G., Varet, J., 1974: Transverse tectonics during split of a continent: data from Afar rift. Tectonophysics23, 17–29.

    Google Scholar 

  • Bearth, P., Stern, W., 1979: Zur Geochemic von Metapillows der Region Zermatt-Saas. Schweiz. Min. Petr. Mitt.59, 349–373.

    Google Scholar 

  • Beccaluva, L., Piccardo, G. B., Serri, G., 1980: Petrology of Northern Apennine ophiolites and comparison with other Tethyan ophiolites. Proceedings Int. Ophiolite Symp. Cyprus1979, 314–331.

    Google Scholar 

  • —,Macciotta, G., Piccardo, G. B., Zeda, O., 1984a: Petrology of lherzolitic rocks from the northern Apennine ophiolites. Lithos17, 299–316.

    Google Scholar 

  • Dal Piaz, G. V., Macciotta G., 1984b: Transitional to normal MORB affinities in ophiolitic metabasites from the Zermatt-Saas, Combin and Antrona Units, Western Alps: implications for the paleogeographic evolution of the Western Tethyan basin. Geol. en Mijnbouw.63, 165–177.

    Google Scholar 

  • Bender, J. F., Hodges, F. N., Bence, A. E. 1978: Petrogenesis of basalts from the Project Famous area: experimental study from 0 to 15 kb. Earth Planet. Sci. Lett.41, 277–302.

    Google Scholar 

  • Bonatti, E., Hamlyn, P., Ottonello, G. 1981: Upper mantle beneath a joung ocean rift: Peridotites from the island of Zabargad (Red Sea). Geology9 474–479.

    Google Scholar 

  • Boudier, F., 1978: Structure and petrology of the Lanzo peridotite massif (Piedmont Alps). Geol. Soc. Am. Bull.89, 1574–1591.

    Google Scholar 

  • Compagnoni, R., Radicati, F., Sandrone, R., 1984: Kaersutitic-bearing mylonitic gabbros from the Lanzo peridotite (Western Italian Alps). Geol. in Mijnbouw.63, 189–196.

    Google Scholar 

  • Dal Piaz, G. V., 1974: Le métamorphisme de haute pression et basse température dans l'evolution structurale du bassin ophiolitique alpino-apenninique. Mem. Soc. Geol. Ital.,93, 437–468.

    Google Scholar 

  • Ernst, W. G., 1978: Aeral geology and petrology of eclogites and associated metabasites of the Piemonte ophiolite nappe, Breuil-St. Jacques area, Italian western Alps. Tectonophysics51, 99–126.

    Google Scholar 

  • De Vecchi, G., Hunziker, J. C., 1977: The Austroalpine layered gabbros of the Matterhorn and Mt. Collon-Dents de Bertol. Schweiz. Min. Petr. Mitt.57, 59–88.

    Google Scholar 

  • —,Venturelli, G., Spadea, P., Di Battistini, G., 1981: Geochemical features of metabasalts and metagabbros from the Piemonte ophiolite nappe, Italian Western Alps. N. Jb. Min. Abh.142, 248–269.

    Google Scholar 

  • Dewey, J. F., Pitman, W. C., Ryan, W. B. F., Bonnin, J., 1973: Plate tectonics and the evolution of the Alpine system. Geol. Soc. Am. Bull.84, 3137–3180.

    Google Scholar 

  • Elter, G. I., 1971: Schistes lustrés et ophiolites de la zone piémontaise entre Orco et Doire Baltée (Alpes Graies). Géol Alpine47, 147–169.

    Google Scholar 

  • Ernst, W. G. 1978: Petrochemical study of some lherzolitic rocks from the Western Alps. J. Petrol.19, 341–392.

    Google Scholar 

  • Gass, I. G., Smewing, J. D., 1981: Ophiolites: Obducted Oceanic Lithosphere. In: The Oceanic Lithosphere (Emiliani, C., ed.), pp. 339–362. New York: J. Wiley.

    Google Scholar 

  • Gast, P. W., 1968: Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta32, 1057–1086.

    Google Scholar 

  • Hervig, R. L., Smith, J. V. 1980: Sodium thermometer for pyroxenes in garnet and spinel lherzolites. J. Geol.88, 337–342.

    Google Scholar 

  • Herzberg, C. T., 1978: Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO−MgO−Al2O3−SiO2. Geochim. Cosmochim. Acta42, 945–957.

    Google Scholar 

  • Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V., Wanke, H., 1979: The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf., 10th, pp. 2031–2050.

  • Kornprobst, J., Ohnenstetter, D., Ohnenstetter, M., 1981: Na and Cr contents in clinopyroxenes from peridotites: a possible discriminant between sub-continental and sub-oceanic mantle. Earth Planet. Sci. Lett.53, 241–254.

    Google Scholar 

  • Lemoine, M., 1980: Serpentinites, gabbros et ophicalcites in the Piedmont-Ligurian domain of the Western Alps: possible indicators of oceanic fracture zones and of associated serpentinites protrusions in the Jurassic-Cretaceous. Tethys. Arch. Sciences Genève33, 103–115.

    Google Scholar 

  • Le Roex, A. P., Dick, H. J. B., Reid, A. M., Erlank, A. J., 1982: Ferrobasalts from the Spiess Ridge segment of the Southwest Indian Ridge. Earth Planet. Sci. Lett.60, 437–451.

    Google Scholar 

  • Lewis, A. D., Smewing, J. D., 1980: The Montgenevre ophiolite (Hautes Alpes, France): Metamorphism and trace elements geochemistry of the volcanic sequence. Chem. Geol.28, 291–306.

    Google Scholar 

  • Lindsley, D. H., 1983: Pyroxene thermometry. Amer. Min.68, 477–493.

    Google Scholar 

  • Lombardo, B., Pognante, U., 1982: Tectonic implications in the evolution of the western Alps ophiolite metagabbros. Ofioliti7, 371–394.

    Google Scholar 

  • —,Nervo R., Compagnoni, R., Messiga B., Kienast, J. R., Mevel, C., Fiora, L., Piccardo, G. B., Lanza, R., 1978: Osservazioni preliminari sulle ofioliti metamorfiche del Monviso (Alpi Occidentali). Rend. Soc. It. Min. Petrol.34, 253–305.

    Google Scholar 

  • Loubet, M., Allegre, C. J., 1982: Trace elements in orogenic lherzolites reveal the complex history of the upper mantle. Nature298, 809–814.

    Google Scholar 

  • Mercier, J. C., Nicolas, A., 1975: Textures and fabric of upper mantle peridotites as illustrated by xenoliths from basalts. J. Petrol.16, 454–497.

    Google Scholar 

  • Mevel, C., 1975: Les pillow lavas spilitiques des massif ophiolitique du Chenaillet et de Gets (Alpes françaises). Thèse 3e cycle, Paris VI, 339 pp.

  • —,Caby, R., Kienast, J. R., 1978: Amphibolite facies conditions in the oceanic crust: example of amphibolitized flaser-gabbro and amphibolites from Chenaillet ophiolite massif (Hautes Alpes, France). Earth Planet. Sci. Lett.39, 98–108.

    Google Scholar 

  • Miyashiro, A., 1975: Classifications, characteristics and origin of ophiolites. J. Geol.83, 249–281.

    Google Scholar 

  • Nakamura, N., 1974: Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta38 757–775.

    Google Scholar 

  • Nicolas, A., Bouchez, J. L., Boudier, F. 1972: Interpretation cinematique des deformations plastiques dans le massif de lherzolite de Lanzo (Alpes Piemontaises)-Comparaison avec d'autres massif. Tectonophysics14, 143–171.

    Google Scholar 

  • Ottonello, G., Ernst, W. G., Joron, J. L., 1974: Rare earth and 3-d transition elements geochemistry of peridotitic rocks: peridotites from the Western Alps J. Petrol.25, 343–372.

    Google Scholar 

  • Pearce, J. A. 1975: Basalt geochemistry used to investigate past tectonic environment on Cyprus. Tectonophysics25, 41–68.

    Google Scholar 

  • —,Cann, J. R., 1973: Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett.19, 290–300.

    Google Scholar 

  • Piccardo, G. B., 1977: Le ofioliti dell'areale ligure: petrologia e ambiente geodinamico di formazione. Rend. Soc. Ital. Min. Petr.33, 221–252.

    Google Scholar 

  • Pognante, U., Lombardo, B., Venturelli, G., 1982: Petrology and geochemistry of Fe−Ti gabbros and plagiogranites from the Western Alps ophiolites. Schweiz. Min. Petr. Mitt.62, 457–472.

    Google Scholar 

  • —,Rösli, U., Toscani, L., 1985: Petrology of ultramafic and mafic rocks from the Lanzo peridotite body (Western Alps). Lithos18, 201–214.

    Google Scholar 

  • Polino, R., Lemoine, M., 1984: Détritisme mixte d'origine continentale et océanique dans les sédiments jurassico-cretacés supra-ophiolitiques de la Téthys ligure: la série du Lago Nero (Alpes occidentales franco-italiennes). C.R. Acad. Sci. Paris298, 359–364.

    Google Scholar 

  • Presnall, D. C., 1980: A double partial melt zone in the mantle beneath mid ocean ridges. Phys. Earth Planet. Int.23, 103–111.

    Google Scholar 

  • Ringwood, A. E., 1975: Composition and Petrology of the Earth's Mantle, 618 pp. New York: McGraw-Hill.

    Google Scholar 

  • Saunders, A. D., Tarney, J., Marsh, N. G. Wood, D. A., 1980: Ophiolites as oceanic crust or marginal basin crust: A geochemical approach. Proc. Int. Oph. Symp. Cyprus1979, 193–204.

    Google Scholar 

  • Saxena, S. K., 1983: Problems of two pyroxene geothermometry. Earth Planet. Sci. Lett.65, 382–388.

    Google Scholar 

  • Sun, S. S., Nesbitt, R. W., Sharaskin, A. Y., 1979: Geochemical characteristics of mid-ocean ridge basalts. Earth Planet. Sci. Lett.44, 119–138.

    Google Scholar 

  • Takahashi, E., Kushiro, I., 1983: Melting of a dry peridotite at high pressure and basalt magma genesis. Amer. Min.68, 859–879.

    Google Scholar 

  • Venturelli, G., Thorpe, R. S., Potts, P. J., 1981: Rare earth and trace element characteristics of ophiolitic metabasalts from the alpine-apennine belt. Earth Planet. Sci. Lett.53, 109–123.

    Google Scholar 

  • Wells, P. R. A., 1977: Pyroxene thermometry in simple and complex systems. Contr. Min. Petrol.62, 129–139.

    Google Scholar 

  • Wood, B. J., Banno, S., 1974: Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contr. Min. Petrol.42, 109–124.

    Google Scholar 

  • Wood, D. A., Tarney, J., Varet, J., Saunders, A. D., Bougault, H., Joron, J. L., Treuil, M., Cann, J. R., 1979,: Geochemistry of basalts drilled in the North Atlantic by IPOD LEG 49: implications for mantle heterogeneity. Earth Planet. Sci. Lett.42, 77–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

This work is part of a C.N.R. (Centro di Studio sui Problemi dell'Orogeno dell Alpi Occidentali) programme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pognante, U., Perotto, A., Salino, C. et al. The ophiolitic peridotites of the Western Alps: Record of the evolution of a small oceanic-type basin in the Mesozoic Tethys. TMPM Tschermaks Petr. Mitt. 35, 47–65 (1986). https://doi.org/10.1007/BF01081918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081918

Keywords

Navigation