Skip to main content
Log in

Early Stage in the Evolution of the Paleoasian Ccean at the Western Margin of the Siberian Craton: Geochemical and Geochronological Evidence

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The discovery of glaucophane relicts in the high-pressure tectonites of the Yenisei suture zone of the Yenisei Ridge suggests the manifestation of the “Chilean-type” convergent margin on the western Siberian Craton, which was controlled by subduction of oceanic crust beneath the continental margin. These rocks are restricted to the tectonic suture between the craton and the Isakovka ocean-island terrane and experienced two metamorphic stages. Petrogeochemical characteristics of the mafic tectonites indicate that their protoliths are N-MORB and E-MORB basalts. More primitive N-MORB basalts were formed at the initial spreading stages through melting of the upper depleted mantle. Higher Ti basalts were formed by melting of enriched mantle protolith at the later spreading stages. U–Pb zircon age of 701.6 ± 8.4 Ma of the metamorphosed analogues of normal basalts marks the initiation of oceanic crust in the region. Revealed sequence of spreading, subduction (640–620 Ma), and shear deformations (~600 Ma) records the early stages in the evolution of the Paleoasian ocean in its junction zone with the western margin of the Siberian craton: from formation of fragments of oceanic crust to the completion of accretionary–subduction events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. E. Bebout, J. G. Ryan, W. P. Leeman, and A. E. Bebout, “Fractionation of trace elements by subduction-zone metamorphism–effect of convergent-margin thermal evolution,” Earth Planet. Sci. Lett. 171, 63–81 (1999).

    Article  Google Scholar 

  • W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” in Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Chapter  Google Scholar 

  • J.-P. Burg and T. V. Gerya, “The role of viscous heating in Barrovian metamorphism: thermomechanical models and application to the Lepontine Dome in the Central Alps,” J. Metamorph. Geol. 23, 75–95 (2005).

    Article  Google Scholar 

  • K. Condie, “High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?” Lithos 79, 491–504 (2005).

    Article  Google Scholar 

  • M. Corsini, V. Bosse, G. Feraud, F. Demoux, and G. Crevola, “Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed 40Ar/39Ar study (Tanneron Massif, SE France),” Int. J. Earth Sci. 99, 327–341 (2010).

    Article  Google Scholar 

  • N. L. Dobretsov, “Evolution of structures of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Nongolian fold belt (Paleoasian ocean),” Russ. Geol. Geophys. 44 (1–2), 3–26 (2003).

    Google Scholar 

  • A. S. Egorov, Deep Structure and Geodynamics of the Lithosphere of Northern Eurasia: Data from Geological–Geophysical Modeling along Russian Geotraverses, (VSEGEI, St.-Petersburg, 2004) [in Russian].

    Google Scholar 

  • W. G. Ernst, “Petrogenesis of glaucophane schists,” J.Petrol. 4, 1–30 (1963).

    Article  Google Scholar 

  • J. G. Fitton, A. D. Saunders, M. J. Norry, B. S. Hardarson, and R. N. Taylor, “Thermal and chemical structure of the Iceland plume,” Earth Planet. Sci. Lett. 153, 197–208 (1997).

    Article  Google Scholar 

  • K. F. Fornash, M. A. Cosca, and D. L. Whitney “Tracking the timing of subduction and exhumation using 40Ar/39Ar phengite ages in blueschist-and eclogite facies rocks (Sivrihisar, Turkey),” Contrib. Mineral. Petrol. 171, 67 (2016). doi 10.1007/s00410-016-1268-2

    Article  Google Scholar 

  • T. V. Gerya, B. Stockhert, and A. L. Perchuk, “Exhumation of high-pressure metamorphic rocks in subduction channel: a numerical simulation,” Tectonics 21, 6-1-6-19 (2002).

  • D. P. Gladkochub, S. A. Pisarevsky, A. M. Stanevich, T. V. Donskaya, and A. M. Mazukabzov, “When Siberia broke up from Rodinia? Evidence from detrital zircon geochronology,” Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium 2013, Ed. by R. Veselovskiy and N. Lubnina, (PERO Press, Moscow, 2013), p. 31.

    Google Scholar 

  • P. R. Hooper, “The Columbia river basalts,” Science 215, 1463–1468 (1982).

    Article  Google Scholar 

  • Igneous Rocks. Acid and Intermediate Rocks, Ed. by V. V. Yarmolyuk and V. I. Kovalenko (Nauka, Moscow, 1987).

    Google Scholar 

  • T. N. Kheraskova, S. A. Kaplan, and V. I. Galuev, Structure of the Siberian Platform and Its Western Margin in the Riphean–Early Paleozoic,” Geotectonics 43 (2), 115–132 (2009).

    Article  Google Scholar 

  • T. N. Kheraskova, S. A. Kaplan, V. P. Bubnov, and V. I. Galuev, “New data on the structure of the Kan Block in the basement of the West Siberian Plate,” Geotectonics 47 (2), 101–114 (2013).

    Article  Google Scholar 

  • P. S. Kozlov, I. I. Likhanov, V. V. Reverdatto, and S. V. Zinoviev, “Tectonometamorphic evolution of the Garevka polymetamorphic complex (Yenisei Ridge),” Russ. Geol. Geophys. 53 (11), 1133–1149 (2012).

    Article  Google Scholar 

  • A. B. Kuzmichev and E. V. Sklyarov, “The Precambrian of Transangaria, Yenisei Ridge (Siberia): Neoproterozoic microcontinent, Grenville-age orogeny, or reworked margin of the Siberian craton,” J. Asian Earth Sci. 115, 419–441 (2016).

    Article  Google Scholar 

  • A. B. Kuzmichev, I. P. Paderin, and A.V. Antonov, “Late Riphean Borisikha ophiolite (Yenisei Ridge): U-Pb zircon age and tectonic setting,” Russ. Geol. Geophys. 49 (12), 883–893 (2008).

    Article  Google Scholar 

  • M. L. Leech and D. F. Stockli, “The late exhumation history of the ultrahigh-pressure Maksyutov Complex, south Ural Mountains, from new apatite fission track data,” Tectonics 19(1), 153–167 (2000).

    Article  Google Scholar 

  • Legend of the Yenisei Series of the State Geologucal Map of the Russian Federation on a Scale 1: 200 000 (2nd Edition), Ed. by L. K. Kachevskii (PGO Krasnoyarskgeologiya, Krasnoyarsk, 2002) [in Russian].

    Google Scholar 

  • I. I. Likhanov, “Mineral reactions in high-alumina ferriferous metapelitic hornfelses: the problem of stability of rare parageneses of contact metamorphism,” Russ. Geol. Geophys. 44 (4), 305–316 (2003).

    Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Lower Proterozoic metapelites in the northern Yenisei Range: nature and age of the protolith and the behavior of material during collisional metamorphism,” Geochem. Int. 49 (3), 224–252 (2011).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Geochemistry, age, and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey Ridge,” Geochem. Int. 52 (1), 1–22 (2014a).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, P-t-t constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications,” Russ. Geol. Geophys. 55 (3), 299–322 (2014b).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Evidence of Middle Neoproterozoic extensional tectonic settings along the western margin of the Siberian Craton: implications for the breakup of Rodinia,” Geochem. Int. 53 (8), 671–689 (2015).

    Article  Google Scholar 

  • I. I. Likhanov and V. V. Reverdatto, “Geochemistry, petrogenesis and age of metamorphic rocks of the Angara Complex at the junction of south and north Yenisei Ridge,” Geochem. Int. 54 (2), 127–148 (2016).

    Article  Google Scholar 

  • I. I. Likhanov, O. P. Polyansky, V. V. Reverdatto, P. S. Kozlov, A. E. Vershinin, M. Krebs, and I. Memmi, “Metamorphic evolution of high-alumina metapelites near the Panimba overthrust (Yenisei Range): mineral associations, PT-conditions, and tectonic model,” Russ. Geol. Geophys. 42 (8), 1205–1220 (2001).

    Google Scholar 

  • I. I. Likhanov, O. P. Polyansky, V. V. Reverdatto, and I. Memmi, “Evidence from Fe-and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, eastern Siberia,” J. Metamorph. Geol. 22, 743–762 (2004).

    Article  Google Scholar 

  • I. I. Likhanov, P. S. Kozlov, N. V. Popov, V. V. Reverdatto, and A. E. Vershinin, “Collisional metamorphism as a result of thrusting in the Transangara region of the Yenisei Ridge,” Dokl. Earth Sci. 411, 1313–1317 (2006a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Geochemical evidence for protolith origin of Fe-and Alrich metapelites from the Kuznetsk Alatau and Yenisei Ridge,” Russ. Geol. Geophys. 47 (1), 120–133 (2006b).

    Google Scholar 

  • I. I. Likhanov, P. S. Kozlov, O. P. Polyansky, N. V. Popov, V. V. Reverdatto, A. V. Travin, and A. E. Vershinin, “Neoproterozoic age of collisional metamorphism in the Transangara region of the Yenisei Ridge (based on 40Ar/39Ar data),” Dokl. Earth Sci. 412, 234–237 (2007).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Feand Al-rich metapelites of the Teiskaya Group, Yenisei Range: geochemistry, protoliths, and the behavior of their material during metamorphism,” Geochem. Int. 46 (1), 17–36 (2008a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and N. V. Popov, “Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range,” Petrology 16 (2), 136–160 (2008b).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, “Three metamorphic events in the Precambrian P-T-t history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites,” Petrology 21 (6), 561–578 (2013a).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and S. V. Zinoviev, “The Neoproterozoic Trans-Angara Dike Belt, Yenisei Range, as an Indicator of Extension and Breakup of Rodinia,” Dokl. Earth Sci. 450, 613–617 (2013b).

    Article  Google Scholar 

  • I. I. Likhanov, A. D. Nozhkin, V. V. Reverdatto, and P. S. Kozlov, “Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton,” Geotectonics 48 (5), 371–389 (2014).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, S. V. Zinoviev, and V. V. Khiller, “P-T-t reconstructions of south Yenisei Ridge metamorphic history (Siberian Craton): petrological consequences and application to the supercontinental cycles,” Russ. Geol. Geophys. 56 (6), 805–824 (2015).

    Article  Google Scholar 

  • I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Hiller, and V. P. Sukhorukov, “P-T-t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions,” J. Asian Earth Sci. 113, 391–410 (2015).

    Article  Google Scholar 

  • I. I. Likhanov, S. V. Zinoviev, P. S. Kozlov, and A. A. Krylov, “Evidence for tectonic stress in the pre-Yenisei suture zone, Yenisei Ridge,” Tectonics and Actual Questions of Earth’s Sciences (IFZ, Moscow, 2016), pp. 139–146 [in Russian].

    Google Scholar 

  • M. T. McCulloch and J. A. Gamble, “Geochemical and geodynamic constraints on subduction zone magmatism,” Earth Planet. Sci. Lett. 102, 358–374 (1991).

    Article  Google Scholar 

  • M. A. Meschide, “A method of discriminating between different types of mid ocean rigde basalts and continental tholeites with Nb–Zr–Y diagram,” Chem. Geol. 56, 207–218 (1986).

    Article  Google Scholar 

  • G. L. Mitrofanov, T. V. Mordovskaya, and F. V. Nikol’skii, “Piling structures of some marginal parts of the Siberian Craton,” Tectonics of Platform Areas, (Nauka, Novosibirsk, 1988), pp. 169–173 [in Russian].

    Google Scholar 

  • A. D. Nozhkin, O. M. Turkina, Yu. K. Sovetov, and A. V. Travin, “The Vendian accretionary event in the southwestern margin of the Siberian Craton,” Dokl. Earth Sci. 415 (6), 782–787 (2007).

    Google Scholar 

  • A. D. Nozhkin, A. S. Borisenko, and P. A. Nevol’ko, “Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge,” Russ. Geol. Geophys. 52 (1), 124–143 (2011).

    Article  Google Scholar 

  • A. D. Nozhkin, O. M. Turkina, N. V. Dmitrieva, and I. I. Likhanov, “Age and P-T parameters of metamorphism of metaterrigenous–carbonate deposits of the Derba Block (East Sayan),” Dokl. Earth Sci. 461 (5), 390–393 (2015).

    Article  Google Scholar 

  • A. D. Nozhkin, N. V. Dmitrieva, I. I. Likhanov, P. A. Serov, and P. S. Kozlov, “Geochemical, isotopic, and geochronological evidence for subsynchronous island-arc magmatism and terrigenous sedimentation (Predivinsk terrane of the Yenisei Ridge),” Russ. Geol. Geophys. 57 (11), 1570–1590 (2016a).

    Article  Google Scholar 

  • A. D. Nozhkin, O. M. Turkina, I. I. Likhanov, and N. V. Dmitrieva, “Late Paleoproterozoic volcanic associations in the southwestern Siberian Craton (Angara-Kan block),” Russ. Geol. Geophys. 57 (2), 247–264 (2016b).

    Article  Google Scholar 

  • V. V. Reverdatto, I. I. Likhanov, O. P. Polyansky, V. S. Sheplev, and V. Yu. Kolobov, Nature and Model of Metamorphism (SO RAN, Novosibirsk, 2017) [in Russian].

    Google Scholar 

  • A. S. Salnikov, Seismologilca Structure of the Earth’s Crust of Platform and Folds Areas of Siberia based on the Regional Refracted Wave Seismic Studies (SNIIGGiMS, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  • S. M. Schmalholz and Y. Y. Podladchikov, “Tectonic overpressure in weak crustal-scale shear zones and implications for exhumation of high-pressure rocks,” Geophys. Res. Lett. 40, 1984–1988 (2013).

    Article  Google Scholar 

  • S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  • V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and evolution of granitoid magmatism in the Yenisei Ridge,” Russ. Geol. Geophys. 47, 32–50 (2006).

    Google Scholar 

  • V. A. Vernikovsky, A. V. Vernikovskaya, A. D. Nozhkin, and V. A. Ponomarchuk, Riphean ophiolites of the Isakovka belt, Yenisei Range,” Geol. Geofiz., 35 (7–8), 169–181 (1994).

    Google Scholar 

  • V. A. Vernikovsky, A. E. Vernikovskaya, A. I. Chernykh, E. B. Sal’nikova, A. B. Kotov, V. P. Kovach, S. Z. Yakovleva, and A. M. Fedoseenko, “Porozhnaya granitoids of the Enisei ophiolite belt: indicators of Neoproterozoic events on the Enisei Ridge,” Dokl. Earth Sci. 381, 1043–1046 (2001).

    Google Scholar 

  • V. A. Vernikovsky, A. Yu. Kazansky, N. Yu. Matushkin, D. V. Metelkin, and J. K. Sovetov, “The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: geological, structural, sedimentological, geochronological, and paleomagnetic data,” Russ. Geol. Geophys. 50 (4), 372–387 (2009).

    Article  Google Scholar 

  • N. I. Volkova and E. V. Sklyarov, “High-pressure complexes of Central Asian fold belt: geologic setting, geochemistry, and geodynamic implications,” Russ. Geol. Geophys. 48 (1), 625–628 (2007).

    Article  Google Scholar 

  • N. I. Volkova, V. V. Khlestov, V. P. Sukhorukov, and M. V. Khlestov, “Geochemistry of metamorphosed pillow basalts of the Chara Zone, NE Kazakhstan,” Dokl. Earth Sci. 467, 350–354 (2016).

    Article  Google Scholar 

  • V. V. Vrublevskii, V. V. Reverdatto, A. E. Izokh, I. F. Gertner, D. S. Yudin, and P. A. Tishin, “Neoproterozoic carbonatite magmatism of the Yenisei Ridge, Central Siberia: 40Ar/39Ar geochronology of the Penchenga rock complex,” Dokl. Earth Sci. 437, 443–448 (2011).

    Article  Google Scholar 

  • D. A. Wood, “The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

    Article  Google Scholar 

  • V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach, E. Yu. Rytsk, I. K. Kozakov, A. B. Kotov, and E. B. Sal’nikova, “Early stages of the paleoasian ocean formation: results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian–Cambrian complexes in the Central Asian Foldbelt,” Dokl. Earth Sci. 410 (5), 1184–1189 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Likhanov.

Additional information

Original Russian Text © I.I. Likhanov, S.V. Zinoviev, 2018, published in Geokhimiya, 2018, No. 2, pp. 120–134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhanov, I.I., Zinoviev, S.V. Early Stage in the Evolution of the Paleoasian Ccean at the Western Margin of the Siberian Craton: Geochemical and Geochronological Evidence. Geochem. Int. 56, 111–124 (2018). https://doi.org/10.1134/S0016702918020040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918020040

Keywords

Navigation