Skip to main content
Log in

Femtosecond hybrid mode-locked semiconductor laser and amplifier dynamics

  • Ultrashort-Pulse Generation
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe the generation of femtosecond high power optical pulses using hybrid passive-active mode-locking techniques. Angle stripe geometry GaAs/AlGaAs semiconductor laser amplifiers are employed in an external cavity including prisms and a stagger-tuned quantum-well saturable absorber. An identical amplifier also serves as an optical power amplifier in a stretched pulse amplification and recompression sequence. After amplification and pulse compression this laser system produces 200 fs, 160 W peak power pulses. We discuss and extend our theory, and supporting phenomenological models, of picosecond and subpicosecond optical pulse amplification in semiconductor laser amplifiers which has been successful in calculating measured spectra and time-resolved dynamics in our amplifiers. We have refined the theory to include a phenomenological model of spectral hole-burning for finite intraband thermalization time. Our calculations are consistent with an intra-band time of approximately 60 fs. This theory of large signal subpicosecond pulse amplification will be an essential tool for understanding the mode-locking dynamics of semiconductor lasers and for analysis of high speed multiple wave-length optical signal processing and transmission devices and systems based on semiconductor laser amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Delfyett, C.H. Lee, G.A. Alphonse, J.C. Connolly: Appl. Phys. Lett.57, 971 (1990)

    Google Scholar 

  2. P.J. Delfyett, L.T. Florez, N. Stoffel, T. Gmitter, N.C. Andreadakis, Y. Silberberg, J.P. Heritage, G.A. Alphonse: IEEE J. QE-28, 2203 (1992)

    Google Scholar 

  3. E.P. Ippen, D.J. Eilenberg, R.W. Dixon: Appl. Phys. Lett.37, 267 (1980)

    Google Scholar 

  4. J.P. van der Ziel, W.T. Tsang, R.A. Logan, R.M. Mikulyiak, W.M. Augustyniak: Appl. Phys. Lett.39, 525 (1981)

    Google Scholar 

  5. Y. Silberberg, P.W. Smith: IEEE J. QE-22, 759 (1986)

    Google Scholar 

  6. D.J. Derickson, R.J. Helkey, A. Mar, J.R. Karin, J.G. Wasserbauer, J.E. Bower: IEEE J. QE-28, 2186 (1992)

    Google Scholar 

  7. A.G. Weber, M. Schell, G. Fischbeck, D. Bimberg: IEEE J. QE-28, 2220 (1992)

    Google Scholar 

  8. M.S. Stix, M.P. Kesler, E.P. Ippen: Appl. Phys. Lett.48, 1722 (1986)

    Google Scholar 

  9. K.L. Hall, J. Mark, E.P. Ippen, G. Eisenstein: Appl. Phys. Lett.56, 1740 (1990)

    Google Scholar 

  10. C.T. Hultgren, E.P. Ippen: Appl. Phys. Lett.59, 635 (1991)

    Google Scholar 

  11. Y. Lai, K.L. Hall, E.P. Ippen: IEEE Photon. Tech. Lett.2, 711 (1990)

    Google Scholar 

  12. K.L. Hall, A.M. Darwish, E.P. Ippen, U. Koren, G. Raybon: Appl. Phys. Lett.62, 1320 (1993)

    Google Scholar 

  13. C.T. Hultgren, D.J. Dougherty, E.P. Ippen: Appl. Phys. Lett.61, 2767 (1992)

    Google Scholar 

  14. P.J. Delfyett, Y. Silberberg, G.A. Alphonse: Appl. Phys. Lett.59, 10 (1991)

    Google Scholar 

  15. J. Mark, J. Mørk: Appl. Phys. Lett.61, 2281 (1992)

    Google Scholar 

  16. G.A. Alphonse, D.B. Gilbert, M.G. Harvey, M. Ettenberg: IEEE J. QE-24, 2454 (1988)

    Google Scholar 

  17. E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat: Appl. Phys. Lett.51, 2222 (1987)

    Google Scholar 

  18. P.J. Delfyett, C.H. Lee, L.T. Florez, N.G. Stoffel, T.J. Gmitter, N.C. Andreadakis, G.A. Alphonse, J.C. Connolly: Opt. Lett.15, 1371 (1990)

    Google Scholar 

  19. G.P. Agrawal, N.A. Olsson: IEEE J. QE-25, 2297 (1989)

    Google Scholar 

  20. H.A. Haus, Y. Silberberg: J. Opt. Soc. Am. B2, 1237 (1985)

    Google Scholar 

  21. F. Krausz, M.E. Fermann, T. Brabec, P.F. Curley, M. Hofer, M.H. Ober, C. Spielmann, E. Wintner, A.J. Schmidt: IEEE J. QE-28, 2097 (1992)

    Google Scholar 

  22. A. Dienes, J.P. Heritage, M.Y. Hong, Y.H. Chang: Opt. Lett.17, 1602 (1992)

    Google Scholar 

  23. M.Y. Hong, Y.H. Chang, A. Dienes, J.P. Heritage, P.J. Delfyett: IEEE J. Quantum Electron. (in press)

  24. K. Vahala, L.C. Chiu, S. Margalit, A. Yariv: Appl. Phys. Lett.42, 631 (1983)

    Google Scholar 

  25. A. Uskov, J. Mørk, J. Mark: IEEE Photon. Tech. Lett.4, 443 (1992)

    Google Scholar 

  26. M. Sheik-Bahae, D.J. Hagan, E.W. van Stryland: Phys. Rev. Lett.65, 96 (1990)

    Google Scholar 

  27. G.P. Agarwal, C.M. Bowden: IEEE Photon. Tech. Lett.5, 640 (1993)

    Google Scholar 

  28. E.W. van Stryland, M.A. Woodall, H. Vanherzeele, M.J. Soileau: Opt. Lett.10, 490 (1985)

    Google Scholar 

  29. M.J. LaGasse, K.K. Anderson, C.A. Wang, H.A. Haus, J.G. Fujimoto: Appl. Phys. Lett.56, 417 (1990)

    Google Scholar 

  30. C.B. Kim, E.T Peng, C.B. Su, W. Riedout, G.H., Cha: IEEE Photon. Tech. Lett.4, 969 (1992)

    Google Scholar 

  31. J.P. Heritage, E.W Chase, R.N. Thurnston, M. Stern: InProc. Conf. Laser and Electro-Optics 1991 (Optical Society of America, Washington, DC 1991) p. 74

    Google Scholar 

  32. Y.K. Chen, M.C. Wu, T. Tanbun-Ek, R.A. Logan, M.A. Chin: Appl. Phys. Lett.58, 1253 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delfyett, P.J., Dienes, A., Heritage, J.P. et al. Femtosecond hybrid mode-locked semiconductor laser and amplifier dynamics. Appl. Phys. B 58, 183–195 (1994). https://doi.org/10.1007/BF01081311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081311

PACS

Navigation