Skip to main content
Log in

Test of effective cluster interactions by pion scattering

  • Original Papers
  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The superposition of effective interactions is studied by a cluster approach to the pion-nucleus potential with particular emphasis on the treatment of the Pauli principle between the clusters. The model is based on the formalism of Kerman, McManus, and Thaler and constructs the pion-nucleus interaction by a superposition procedure of pion-cluster interactions in the framework of the fish-bone model. The second-order contribution due to excitations of the relative motion between the clusters has been taken into account as well as true absorption. A test calculation ofΠ +_20 scattering with the cluster approach reproduces the gross structure of the differential elastic cross section and the total non-elastic cross section of conventional calculations quite well. Furthermore, it is confirmed that the three-body Pauli interaction is negligible also in the case of a realistic and rather complicated pion-nucleus interaction thus justifying the usual folding approach. The rotational bands contribute about 10% to the cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sauer, P. U.: Microscopic Structure with Subnucleonic Degrees of Freedom. Preprint, University Hannover, 1984.

  2. Landau, R. H., Phatak, S. C., Tabakin, F.: Ann. Phys.78, 299 (1973).

    Google Scholar 

  3. Landau, R. H.: Ann. Phys.92, 205 (1975); Phys. Lett.57B, 13 (1975).

    Google Scholar 

  4. Liu, L. C., Shakin, C. M.: Phys. Rev.C16, 333 (1977)

    Google Scholar 

  5. Landau, R. H.: Phys. Rev.C15, 2127 (1977).

    Google Scholar 

  6. Lee, T. S., Tabakin, F.: Nucl. Phys.A226, 253 (1974)

    Google Scholar 

  7. Lee, T. S., Pittel, S.: Nucl. Phys.A256, 509 (1976)

    Google Scholar 

  8. Lee, T. S., Chakravarti, S.: Phys. Rev.C16, 273 (1977)

    Google Scholar 

  9. Seki, R.: Phys. Rev.C3, 454 (1971)

    Google Scholar 

  10. Charlton, L. A., Eisenberg, J. M.: Ann. Phys.63, 286 (1971)

    Google Scholar 

  11. Gibbs, W. R., Gibson, B. F., Hess, A. T., Stephenson, Jr., G. T., Kaufman, W. B.: Phys. Rev.C13, 2433 (1976)

    Google Scholar 

  12. Auerbach, E. H., Fleming, D. M., Sternheim, M. M.: Phys. Rev.162, 1638 (1967);171, 1781 (1968)

    Google Scholar 

  13. Sternheim, M. M., Auerbach, E. H.: Phys. Rev. Lett.25, 1550 (1970)

    Google Scholar 

  14. Lee, H. K., McManus, H.: Nucl. Phys.A 167, 257 (1971).

    Google Scholar 

  15. Crowe, K., Fainberg, A., Miller, J., Parsons, A.: Phys. Rev.180, 1349 (1969)

    Google Scholar 

  16. Amann, J. F., Barnes, P. D., Doss, M., Dytman, S. A., Eisenstein, R. A., Thompson, A. C.: Phys. Rev. Lett.35, 426 (1975)

    Google Scholar 

  17. Cooper, M., Eisenstein, R.: Phys. Rev.C13, 1334 (1976)

    Google Scholar 

  18. Landau, R. H., Thomas, A. W.: Phys. Lett.61B, 361 (1976).

    Google Scholar 

  19. Landau, R. H., Thomas, A. W.: Nucl. Phys.A302, 461 (1978)

    Google Scholar 

  20. Wildermuth, K., Tang, Y. C.: A Unified Theory of the Nucleus. In: Clustering Phenomena in Nuclei, Vol. 1, Braunschweig: Vieweg 1977

    Google Scholar 

  21. Germond, J. F.: Proc. 10th Int. Conf. on Particles and Nuclei, July 30–August 8, 1984, Heidelberg (Güttner, F., Povh, B., zu Putlitz, G., eds.), F26

  22. Germond, J. F., Wilkin, C.: Nucl. Phys.A237, 477 (1975)

    Google Scholar 

  23. Li Quing-Run, Chen Sheng-Zhong, Zhao En-Guang: Nucl. Phys.A384, 466 (1982).

    Google Scholar 

  24. Schmid, E. W.: Z. Phys.A 302, 311 (1981)

    Google Scholar 

  25. Schmid, E. W., Orlowski, M., Bao Cheng-Guang: Z. Phys.A308, 237 (1982)

    Google Scholar 

  26. Francis, N. C., Watson, K. M.: Phys. Rev.92, 291 (1953)

    Google Scholar 

  27. Riesenfeld, W. B., Watson, K. M.: Phys. Rev.104, 492 (1956)

    Google Scholar 

  28. Goldberger, M. L., Watson, K. M.: Collision Theory, chapt. 11. New York: Wiley 1964

    Google Scholar 

  29. Kerman, A. K., McManus, H., Thaler, R. M.: Ann. Phys.8, 551 (1959)

    Google Scholar 

  30. Schmid, E. W.: Z. Phys.A297, 105 (1980)

    Google Scholar 

  31. Schmid, E. W., Saito, S., Fiedeldey, H.: Z. Phys.A306, 37 (1982)

    Google Scholar 

  32. Lipperheide, R., Fiedeldey, H., Schmid, E. W., Sofianos, S. A.: Z. Phys.A320, 265 (1985)

    Google Scholar 

  33. Brody, T. A., Moshinsky, M.: Tables of Transformation Brackets. New York: Gordon and Breach 1980

    Google Scholar 

  34. Horiuchi, H.: Suppl. Prog. Theor. Phys.62, 90 (1977)

    Google Scholar 

  35. Sünkel, W., Wildermuth, K.: Phys. Lett.41B, 439 (1972)

    Google Scholar 

  36. Fiebig, H. R., Weiguny, A.: Z. Phys.A279, 275 (1976)

    Google Scholar 

  37. Leeb, H., Schmid, E. W.: Z. Phys.A298, 113 (1980)

    Google Scholar 

  38. Landau, R. H.: Comp. Phys. Comm.28, 109 (1982)

    Google Scholar 

  39. de Jager, C. W., de Vries, H., de Vries, C.: Atomic and Nuclear Data Tables14, 479 (1974)

    Google Scholar 

  40. Frosch, R. F., McCharty, J. S., Rand, R. E., Yearian, M. R.: Phys. Rev.160, 874 (1967)

    Google Scholar 

  41. Nordberg, M. E., Kinsey, Jr., K. F.: Phys. Lett.20, 692 (1966)

    Google Scholar 

  42. Fournier, G., Gérard, A., Miller, J., Picard, J., Saghai, B., Vernin, P. Bertin, P. J., Coupat, B., Lingeman, E. W. A., Seth, K. K.: Nucl. Phys.A426, 542 (1984)

    Google Scholar 

  43. Malbrough, D. J., Darden, C. W., Edge, R. D., Marks, T., Preedon, B. M., Burman, R. L., Gross, E. E., Lindermann, C. A., Grotov, K.: Phys. Rev.C17, 1395 (1978)

    Google Scholar 

  44. Albanese, J. P., Arvieux, J., Boschitz, E., Ingram, C. H. Q., Pflug, L., Wiedner, C., Zichy, J.: Phys. Lett.73B, 119 (1978)

    Google Scholar 

  45. Rowe, G., Salomon, M., Landau, R. H.: Phys. Rev.C18, 584 (1978)

    Google Scholar 

  46. Thomas, A. W.: Nucl. Phys.A258, 417 (1976)

    Google Scholar 

  47. Frey, G., Frank, H., Schütz, W., Theissen, H.: Z. Phys.265, 401 (1973)

    Google Scholar 

  48. Watanabe, S.: Nucl. Phys.8, 484 (1958)

    Google Scholar 

  49. Perey, F. G., Satchler, G. R.: Nucl. Phys.A97, 515 (1967)

    Google Scholar 

  50. Johnson, R. C., Soper, P. J. R.: Phys. Rev.C1, 976 (1970)

    Google Scholar 

  51. Kowalski, K. L.: Formalism Dependent Optical Potentials. Preprint of the Case Western Reserve University, Cleveland, 1985

  52. Rook, J. R., Nucl. Phys.61, 219 (1965)

    Google Scholar 

  53. Ajzenberg-Selove, F.: Nucl. Phys.A300, 1 (1978)

    Google Scholar 

  54. Walliser, H., Fheßbach, T.: Nucl. Phys.A394, 387 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leeb, H., Schmid, E.W. Test of effective cluster interactions by pion scattering. Few-Body Systems 1, 203–221 (1986). https://doi.org/10.1007/BF01076712

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076712

Keywords

Navigation