Skip to main content
Log in

Genetic analysis of different kinds of aggressive behavior

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Various kinds of aggressive behavior such as spontaneous intermale aggression, predatory aggression (locust-killing behavior), and irritable (shock-induced) aggression were investigated in inbred strains of mice. Genotype was shown to affect significantly the phenotypic variety of these kinds of aggression. There were, however, no interstrain correlations either between intermale aggression and predatory behavior or between intensity of intermale, shock-induced aggression and locust-killing behavior. Moreover, the intermale aggression level (percentage of fighting mice in each strain) did not correlate with the intensity of fighting. It has been shown by Mendelian analysis on C57BL/6J and BALB/c strains that these indices of intermale aggression are under different genetic control. The selection of Norway rats over 20 generations for reduced fear-induced aggressiveness toward man resulted in a decrease in irritable aggression and loss of an aggressive response to man. No changes in intermale and predatory aggression, however, were found. Hence, different kinds of aggressive behavior—intermale, predatory, and fear-induced aggression—seem to be controlled by different genetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandler, R., and Moyer, K. E. (1970). Animal spontaneously attacked by rats.Commun. Behav. Biol. 5:117–123.

    Google Scholar 

  • Belyaev, D. K. (1970). Destabilizing selection as a factor in domestication.J. Hered. 70:301–308.

    Google Scholar 

  • Blanchard, D. C., and Blanchard, R. J. (1984). Inadequacy of pain-aggression hypothesis revealed in naturalistic settings.Aggress. Behav. 10:33–46.

    Google Scholar 

  • Blanchard, D. C., and Blanchard, R. J. (1990). The colony model of aggression adn defense. In Dewsbury, D. A. (ed.),Contemporary Issues in Comparative Psychology, Sinauer, Sunderland, MA, pp. 410–430.

    Google Scholar 

  • Brain, P. F. (1975). What does individual housing mean to a mouse?,Life Sci. 16:187–200.

    Google Scholar 

  • Brain, P. F., and Al-Maliki, S. (1979). Effect of lithium chloride, injections on rank-related fighting, maternal aggression and, locust-killing responses in naive and experienced “TO” strain mice.Pharmacol. Biochem. Behav. 10:663–671.

    Google Scholar 

  • Brown, R. (1953). Social behavior, reproduction and population changes in house mouse (Mus musculus L.).Ecol. Monogr. 23:217–240.

    Google Scholar 

  • Ciaranello, R. D., Lipsky, A., and Axelrod, J. (1974). Association between fighting behavior and catecholamine biosynthethic enzyme activity in two inbred mouse sublines.Proc. Natl. Acad. Sci. USA 71:3006–3008.

    Google Scholar 

  • Ehrman, L., and Parsons, P. A. (1981).Behavior Genetics and Evolution. McGraw-Hill, New York.

    Google Scholar 

  • Eichelman, B., Elliott, G. R., and Barchas, J. D. (1981). Biochemical, pharmacological and genetic aspects of aggression. In Hamburg, D. A., and Trudean, M. B. (eds.),Biobehavioral Aspects of Aggression, New York.

  • Eleftheriou, B. E., Bailey, D., and Denenberg, V. H. (1974). Genetic analysis of fighting behavior in mice.Physiol Behav.,13:773–777.

    Google Scholar 

  • Falconer, D. S. (1960).Introduction to Quantitative Genetics, Ronald, New York.

    Google Scholar 

  • Hahn, M. E. (1971). Social relationships and their development in two strains ofMus musculus.Dissert. Abstr. Int. 32:585.

    Google Scholar 

  • Hahn, M. E., and Haber, S. B. (1982). The inheritance of agonistic behavior in male mice: A diallel analysis.Aggress. Behav. 8:19–38.

    Google Scholar 

  • Hutchinson, R. R. (1983). The pain-aggression relationship and its expression in naturalistic settings.Aggress. Behav. 9:229–242.

    Google Scholar 

  • Kessler, S. Orenberg, E. K., Elliott, G. R., and Barchas, J. D. (1977). A genetic analysis of aggressive behavior in two strains of mice.Behav. Genet. 7:313–321.

    Google Scholar 

  • Kulikov, A. V., and Popova, N. K. (1980). Study of genetic control of a “spontancous” aggressiveness in mice.Genetika 16:526–531 (Russian).

    Google Scholar 

  • Kulikov, A. V., Zhanaeva, E. Y., and Popova, N. K. (1989). Tryptophan hydroxylase activity in the brain of silver foxes and wild Norway rats selected according to their behavior towards man.Genetica 25:346–350 (Russian).

    Google Scholar 

  • Lagerspetz, K. M. (1964). Studies on the aggressive behavior of mice.Ann. Acad. Sci. Fennice Ser. B. 131:1–131.

    Google Scholar 

  • Lievick, J., and Reilhards, R. G. (1973). Social dominance and reproductive performance in laboratory mice.Zeit. Tierpsychol. 32:147–152.

    Google Scholar 

  • Lorenz, K. (1966).On Aggression, Methuen, London.

    Google Scholar 

  • Maxson, S. C., Ginsburg, B. E., and Fratther, A. (1979). Interaction of Y-chromosomal and autosomal gene(s) in the development of intermale aggression in mice.Behav. Genet. 9:219–226.

    Google Scholar 

  • Maxson, S. C., Dider-Ericson, A., and Ogawa, S. (1986). The Y chromosome, social signals and agonistic behavior in mice.Behav. Genet. 16:628.

    Google Scholar 

  • Miczek, K. A. (1987). The psychopharmacology of aggression. In Iversen, I., Iversen, S., and Snyder, S. (eds.),Handbook of Psycho-pharmacology, Plenum, New York, pp. 183–328.

    Google Scholar 

  • Moyer, K. E. (1968). Kinds of aggression and their physiological basis.Commun. Behav. Biol. Part A 2:65–87.

    Google Scholar 

  • Naumenko, E. V., Popova, N. K., and Obut, G. A. (1974). The function of the gonadal system and its effect on the pituitary-adrenal complex in white rate males in group and in isolation.Zh. Obshei Biol. 35:440–447 (Russian).

    Google Scholar 

  • Naumenko, E. V., Popova, N. K., Nikulina, E. M., Dygalo, N. N., Shishkina, G. T., Borodin, P. M., and Markel, A. L. (1989). Behavior, adrenocortical, activity, and brain monoamines in Norway rats selected for reduced aggressiveness towards man.Pharmacol. Biochem. Behav. 33:85–91.

    Google Scholar 

  • Nikulina, E. M. (1981). Characteristic features of manifestation of predatory aggression in mice.Zh. Vysshey Nervnoi Deyatelnosti 31:1048–1053 (Russian).

    Google Scholar 

  • Nikulina, E. M. (1982). Genetic determination of the predatory aggression in rats.Izvestia Sib. Otdel. Akad. Nauk SSSR 1:107–110 (Russian).

    Google Scholar 

  • Nikulina, E. M., and Kapralova, N. S. (1991). Effects of genotype and stimulation of various types of dopamine receptors on shock-induced aggression in mice.Zh. Vysshei Nervnoi Deyatelnosti 41:734–740 (Russian).

    Google Scholar 

  • Nikulina, E. M., and Popova, N. K. (1983). Genetic analysis of predatory, aggression in mice.Genetika 19:1105–1110 (Russian).

    Google Scholar 

  • Nikulina, E. M., and Popova, N. K. (1988). Predatory aggression in the mink (Musteva vison): Role of serotonin and food satiation.Aggress. Behav. 14:77–84.

    Google Scholar 

  • Popova, N. K., and Kulikov, A. V. (1986). Genetic analysis of “spontaneous” intermale aggression in mice.Aggress. Behav. 12:425–431.

    Google Scholar 

  • Popova, N. K., Naumenko, E. V., and Kolpakov, V. G. (1978).Serotonin and behavior, Nauka, Novosibirsk (Russian).

    Google Scholar 

  • Popova, N. K., Viotenko, N. N., Pavlova, S. I., Trut, L. N., Naumenko, E. V., and Belyaev, D. K. (1980). Genetics and phenogenetics of hormonal, characteristics in animals. VII. Relationships between brain, serotonin and hypothalamo-pituitary-adrenal axis in emotional, stress in domesticated and nondomesticated silver foxes.Genetika 16:1865–1870 (Russian).

    Google Scholar 

  • Popova, N. K., Kulikov, A. V., Nikulina, E. M., Kozlachkova, E. Y., and Maslova, G. B. (1991). Serotonin metabolism and serotonergic receptors in Norway rats selected for low aggressiveness to man.Aggress. Behav. 17:207–213.

    Google Scholar 

  • Selmanoff, M. K., Jumonville, J. E., Maxson, S. C., and Ginsburg, B. E., (1975). Evidence for Y-chromosomal contribution to an aggressive phenotype in inbred mice.Nature 253:529–530.

    Google Scholar 

  • Selmanoff, M. K., Maxson, S. C., and Ginsburg, B. E. (1976). Chromosomal determination of intermale aggressive behavior in inbred mice.Behav. Genet. 6:712–716.

    Google Scholar 

  • Siegfried, B., Alleva, E., Oliverio, A., and Puglisillegera, S. (1981). Effects of isolation on activity, reactivity, excitability and, aggressive behavior in 2 inbred strains of mice.Behav. Brain Res. 2:211–218.

    Google Scholar 

  • Simber, S., Puglisillegra, S., and Mandel, P. (1982). Ami nobutiric acid in brain areas of isolated aggressive and nonaggressive inbred strains of mice.Pharmacol. Biochem. Behav. 16:57–62.

    Google Scholar 

  • Sokolov, V. K. (1977).Mammalian Systematics, Vyssja skola, Moscow (Russian).

    Google Scholar 

  • Southwick, C. H., and Clark, L. H. (1968). Interstrain differences in aggressive behavior and exploratory activity in inbred mice.Commun. Behav. Biol. 1:49–59.

    Google Scholar 

  • Valzelli, L. (1973). The “isolation syndrome” in mice.Psychopharmacologia 31:305–320.

    Google Scholar 

  • Valzelli, L. (1981).Psychobiology of Aggression and Violence, Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, N.K., Nikulina, E.M. & Kulikov, A.V. Genetic analysis of different kinds of aggressive behavior. Behav Genet 23, 491–497 (1993). https://doi.org/10.1007/BF01067985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067985

Key Words

Navigation