Skip to main content
Log in

Geometry in nonlinear quantumlike models on stiefel manifolds and bifurcations of associated autonomous systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Based on the geometric characteristics of Stiefel manifolds VN,k=SO(N)/SO(N-k) that have been previously found, two-loop β functions (a matrix β function, and a pair of scalar functions) of the renormalized group and a dynamic system that together describe the renormalization group evolution of effective interaction in nonlinear σ-models on such manifolds are obtained. It is shown that for definite values of the parameter bifurcations of saddle-node type equilibrium positions are observed in this dynamic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. R. Jackiw and P. Rossi, “Stability and bifurcation in Yang-Mills theory,” Phys. Rev.,21D, 426–445 (1980).

    Google Scholar 

  2. S. G. Matinyan, G. K. Savvidi, and N. G. Ter-Arutyunyan, “Classical Yang-Mills mechanics. Nonlinear oscillations of light,” Zh. Éksp. Teor. Fiz.,80, 830–838 (1981).

    Google Scholar 

  3. B. V. Chirikov and D. L. Shepelyanskii, “Dynamics of certain homogeneous models of classical Yang-Mills fields,” Yad. Fiz.,36, 1563–1576 (1982).

    Google Scholar 

  4. S. G. Matinyan, G. K. Savvidi, and N. G. Ter-Arutyunyan, “Stochasticity of classical Yang-Mills mechanics and its elimination by means of the Higgs mechanism,” Pis'ma Zh. Éksp. Teor. Fiz.,34, 613–616 (1981).

    Google Scholar 

  5. L. V. Medvedev, “Dynamic stochasticity and quantification,” Teor. Mat. Fiz.,60, 224–244 (1989).

    Google Scholar 

  6. A. A. Belavin and A. M. Polyakov, “Metastable states of two-dimensional isotropic ferromagnetics,” Pis'ma Zh. Éksp. Teor. Fiz.,22, No. 10, 503–505 (1975).

    Google Scholar 

  7. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, “Pseudoparticle solutions of the Yang-Mills theory,” Phys. Lett.,59B, No. 1, 85–87 (1975).

    Google Scholar 

  8. A. M. Perelomov, “Instanton-type solutions in chiral models,” Usp. Fiz. Nauk,134, No. 4, 577–610 (1981).

    Google Scholar 

  9. D. J. Gross and F. Wilszek, “Ultraviolet behavior of non-Abelian gauge theories,” Phys. Rev. Lett.,30, 1343–1346 (1973).

    Google Scholar 

  10. H. D. Politzer, “Reliable perturbative results for strong interactions?,” Phys. Rev. Lett.,30, 1346–1349 (1973).

    Google Scholar 

  11. A. M. Polyakov, “Interaction of Goldstone particles in two dimensions,” Phys. Lett.,59B, 79–81 (1975).

    Google Scholar 

  12. D. Frieden, “Nonlinear models in 2 + ɛ dimensions,” Phys. Rev. Lett.,45, 1057–1060 (1980).

    Google Scholar 

  13. L. Alvarez-Gaume, D. Z. Friedman, and S. Mukhi, “The background field method and the UV structure of σ-models,” Ann. Phys.,134, 85–109 (1981).

    Google Scholar 

  14. D. Husemoller, Fiber Bundles (second edn.), Springer, Berlin (1974).

    Google Scholar 

  15. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  16. A. M. Gavrilik and N. V. Telichko, “Two-loop β functions of Stiefel σ-models,” Preprint No. 89-56R, Institute of Theoretical Physics, Academy of Sciences of the Ukraine, Kiev (1989).

    Google Scholar 

  17. Shch. Kobayasi and K. Nomidzu, Foundations of Differential Geometry [Russian translation], Vol. 2, Nauka, Moscow (1981).

    Google Scholar 

  18. D. Gromol, W. Klingenberg, and W. Meyer, Riemannian Geometry in the Large [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  19. A. Sagle, “Some homogeneous Einstein manifolds,” Nagoya Math. J.,39, 81–106 (1970).

    Google Scholar 

  20. E. Brezin and J. Zinn-Justin, “Spontaneous breakdown of continuous symmetries near two dimensions,” Phys. Rev.,14B, 3110–3120 (1976).

    Google Scholar 

  21. A. McKane and M. Stone, “Nonlinear σ-models: a perturbative approach to symmetry restoration,” Nucl. Phys.,163B, 169–188 (1980).

    Google Scholar 

  22. S. Hikami, “Three-loop β-functions of nonlinear σ-models on symmetric spaces,” Phys. Lett.,98B, 208–210 (1981).

    Google Scholar 

  23. A. M. Gavrilik, “Self-interaction anisotropy of Stiefel systems of Goldstonions,” Mod. Phys. Lett.,4A, 1783–1788 (1989).

    Google Scholar 

  24. E. Brezin, S. Hikami, and J. Zinn-Justin, “Generalized nonlinear σ-models with gauge invariance,” Nucl. Phys.,165B, 528–544 (1980).

    Google Scholar 

  25. A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Theory of Bifurcations of Dynamic Systems in the Plane [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  26. N. N. Bautin and E, A. Leontovich, Methods and Techniques of the Qualitative Investigation of Dynamic Systems in the Plane [in Russian], Nauka, Moscow (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrainskii Matematicheskii Zhurna. l, Vol. 43, No. 11, pp. 1527–1537, November, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilik, A.M. Geometry in nonlinear quantumlike models on stiefel manifolds and bifurcations of associated autonomous systems. Ukr Math J 43, 1418–1427 (1991). https://doi.org/10.1007/BF01067281

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067281

Keywords

Navigation