Skip to main content
Log in

Nonlinear damped oscillators on Riemannian manifolds: Fundamentals

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The classical theory of mass-spring-damper-type dynamical systems on the ordinary flat space ℝ3 may be generalized to higher-dimensional Riemannian manifolds by reformulating the basic underlying physical principles through differential geometry. Nonlinear dynamical systems have been studied in the scientific literature because they arise naturally from the modeling of complex physical structures and because such dynamical systems constitute the basis for several modern applications such as the secure transmission of information. The flows of nonlinear dynamical systems may evolve over time in complex, non-repeating (although deterministic) patterns. The focus of the present paper is on formulating the general equations that describe the dynamics of a point-wise particle sliding on a Riemannian manifold in a coordinate-free manner. The paper shows how the equations particularize in the case of some manifolds of interest in the scientific literature, such as the Stiefel manifold and the manifold of symmetric positive-definite matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van der Pol B, On relaxation-oscillations, The London, Edinburgh and Dublin Philosophical Magazine & Journal of Science, 1927, 2(7): 978–992.

    Google Scholar 

  2. Tôrres L A B and Aguirre L A, Transmitting information by controlling nonlinear oscillators, Physica D, 2004, 196: 387–406.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao T and Yi H, On the complex oscillation of higher order linear differential equations with meromorphic coefficients, Journal of Systems Science and Complexity, 2007, 20(1): 135–148.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen J, Lu J A, and Wu X, Bidirectionally coupled synchronization of the generalized Lorenz systems, Journal of Systems Science and Complexity, 2011, 24(3): 433–448.

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang J and Zhang H, Bifurcations of periodic orbits in three-well Duffing system with a phase shift, Journal of Systems Science and Complexity, 2011, 24(3): 519–531.

    Article  MathSciNet  MATH  Google Scholar 

  6. Mo J and Lin W, Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climate, Journal of Systems Science and Complexity, 2011, 24(2): 271–276.

    Article  MathSciNet  MATH  Google Scholar 

  7. FitzHugh R, Mathematical models of excitation and propagation in nerve, Ed. by Schwan H P, McGraw-Hill, New York, 1969, 1–85.

  8. Barbosa R S, Tenreiro Machado J A, Vinagre B M, and Calderón A J, Analysis of the Van der Pol oscillator containing derivatives of fractional order, Journal of Vibration and Control, 2007, 13(9–10): 1291–1301.

    Article  MATH  Google Scholar 

  9. Trueba J L, Rams J, and Sanjuán M A F, Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators, International Journal of Bifurcation and Chaos, 2000, 10(9): 2257–2267.

    Article  MathSciNet  MATH  Google Scholar 

  10. Sanjuán M A F, The effect of nonlinear damping on the universal escape oscillator, International Journal of Bifurcation and Chaos, 1999, 9(4): 735–744.

    Article  MATH  Google Scholar 

  11. Lorenz E N, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 1963, 20(2): 130–141.

    Article  Google Scholar 

  12. Rabinovich M I and Fabrikant A L, Stochastic self-modulation of waves in nonequilibrium media, Soviet Physics (Journal of Experimental and Theoretical Physics), 1979, 50(2): 311–317.

    Google Scholar 

  13. Rössler O E, An equation for continuous chaos, Physics Letters, 1976, 57A(5): 397–398.

    Article  Google Scholar 

  14. Maggio G M, De Feo O, and Kennedy M P, Nonlinear analysis of the Colpitts oscillator and applications to design, IEEE Transactions on Circuits Systems — Part I: Fundamental Theory and Applications, 1999, 46(9): 1118–1130.

    Article  MATH  Google Scholar 

  15. Georgiou I T, Corless M J, and Bajaj A K, Dynamics of nonlinear structures with multiple equilibria: A singular perturbation-invariant manifold approach, Zeitschrift für angewandte Mathematik und Physik, 1999, 50: 892–924.

    Article  MathSciNet  MATH  Google Scholar 

  16. Spivak M, A Comprehensive Introduction to Differential Geometry, 2nd Edition, Berkeley, CA: Publish or Perish Press, 1979.

    Google Scholar 

  17. Kaufman D M and Pai D K, Geometric numerical integration of inequality constrained, nonsmooth Hamiltonian systems, SIAM Journal on Scientific Computing, 2007, 30(1): 134–147.

    MathSciNet  Google Scholar 

  18. Modin K and Söderlind G, Geometric integration of Hamiltonian systems perturbed by Rayleigh damping, BIT Numerical Mathematics, 2011, 51: 977–1007.

    Article  MathSciNet  MATH  Google Scholar 

  19. Shorek S, A stationarity principle for non-conservative systems, Advanced Water Resources, 1984, 7: 85–88.

    Article  Google Scholar 

  20. Fiori S, Extended Hamiltonian learning on Riemannian manifolds: Theoretical aspects, IEEE Transactions on Neural Networks, 2011, 22(5): 687–700.

    Article  Google Scholar 

  21. Fiori S, Extended Hamiltonian learning on Riemannian manifolds: Numerical aspects, IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(1): 7–21.

    Article  Google Scholar 

  22. Fiori S, Solving minimal-distance problems over the manifold of real symplectic matrices, SIAM Journal on Matrix Analysis and Applications, 2011, 32(3): 938–968.

    Article  MathSciNet  MATH  Google Scholar 

  23. Molero F J, Lara M, Ferrer S, and Cèspedes F, 2-D Duffing oscillator: Elliptic functions from a dynamical systems point of view, Qualitative Theory of Dynamical Systems, 2013, 12(1): 115–139.

    Article  MathSciNet  MATH  Google Scholar 

  24. Grubišić I and Pietersz R, Efficient rank reduction of correlation matrices, Linear Algebra and Its Applications, 2007, 422: 629–653.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rahman I U, Drori I, Stodden V C, Donoho D L, and Schröder P, Multiscale representations for manifold-valued data, Multiscale Modeling and Simulation, 2005, 4(4): 1201–1232.

    Article  MathSciNet  MATH  Google Scholar 

  26. Salencon J, Handbook of Continuum Mechanics, Springer-Verlag, Berlin, 2001.

    Book  MATH  Google Scholar 

  27. Harandi M T, Sanderson C, Wiliem A, and Lovell B C, Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures, Proceedings of the 2012 IEEE Workshop on Applications of Computer Vision (WACV, Breckenridge (CO, USA), January 9–11, 2012), 2012, 433–439.

    Chapter  Google Scholar 

  28. Chen Y and McInroy J E, Estimation of symmetric positive definite matrices from imperfect measurements, IEEE Transactions on Automatic Control, 2002, 47(10): 1721–1725.

    Article  MathSciNet  Google Scholar 

  29. Slavakis K, Yamada I, and Sakaniwa K, Computation of symmetric positive definite Toeplitz matrices by the hybrid steepest descent method, Signal Processing, 2003, 83(5): 1135–1140.

    Article  MATH  Google Scholar 

  30. Fiori S, Learning the Fréchet mean over the manifold of symmetric positive-definite matrices, Cognitive Computation, 2009, 1(4): 279–291.

    Article  MathSciNet  Google Scholar 

  31. Chossat P and Faugeras O, Hyperbolic planforms in relation to visual edges and textures perception, PLoS Computational Biology, 2009, 5(12): e1000625.

    Article  MathSciNet  Google Scholar 

  32. Celledoni E and Fiori S, Neural learning by geometric integration of reduced ‘rigid-body’ equations, Journal of Computational and Applied Mathematics, 2004, 172(2): 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  33. Joho M and Rahbar K, Joint diagonalization of correlation matrices by using Newton methods with applications to blind signal separation, Proceedings of IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM’2002, Rosslyn (VA, USA), August 4–6, 2002), 2002, 403–407.

    Google Scholar 

  34. Nishimori Y and Akaho S, Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold, Neurocomputing (Special issue on “Geometrical methods in neural networks and learning”, Eds. by Fiori S and Amari S I), 2005, 67: 106–135.

    Article  Google Scholar 

  35. Yoo J and Choi S, Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds, Proceedings of the Intelligent Data Engineering and Automated Learning (IDEAL’2008, Daejeon (South Korea), November 2–5, 2008), Springer Berlin/Heidelberg, 2008, 140–147.

    Google Scholar 

  36. MacInnes C S and Vaccaro R J, Tracking direction-of-arrival with invariant subspace updating, Proceedings of the International Conference on Acoustics, Speech and Signal Processing, (ICASSP’1996, Atlanta (GA, USA), May 7–10, 1996), 1996, 2896–2899.

    Google Scholar 

  37. Amari S I, Natural gradient learning for over-and under-complete bases in ICA, Neural Computation, 1999, 11: 1875–1883.

    Article  Google Scholar 

  38. Kreutz-Delgado K and Rao B D, Sparse basis selection, ICA, and majorization: Towards a unified perspective, Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP’1999, Phoenix (AZ, USA), March 15–19, 1999), 1999, 2: 1081–1084.

    Google Scholar 

  39. Edelman A, Arias T A, and Smith S T, The geometry of algorithms with orthogonality constraints, SIAM Journal on Matrix Analysis Applications, 1998, 20(2): 303–353.

    Article  MathSciNet  MATH  Google Scholar 

  40. Eldén L and Park H, A Procrustes Problem on the Stiefel Manifold, Numerical Mathematics, 1999, 82: 599–619.

    MATH  Google Scholar 

  41. Kaneko T, Fiori S, and Tanaka T, Empirical arithmetic averaging over the compact Stiefel manifold, IEEE Transactions on Signal Processing, 2013, 61(4): 883–894.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Fiori.

Additional information

This paper was supported by the Grant ‘Ricerca Scientifica di Ateneo (RSA-B) 2014’.

This paper was recommended for publication by Editor ZHANG Bingyu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiori, S. Nonlinear damped oscillators on Riemannian manifolds: Fundamentals. J Syst Sci Complex 29, 22–40 (2016). https://doi.org/10.1007/s11424-015-4063-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-015-4063-7

Keywords

Navigation