Skip to main content
Log in

Genetic analysis of circadian and ultradian locomotor activity rhythms in laboratory rats

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Obvious differences exist in the daily activity patterns of the LEW/Ztm and ACI/Ztm inbred strains of laboratory rats. The inbred strain ACI/Ztm shows a clear 24-h rhythm of locomotor activity. The activity pattern of the LEW/Ztm strain, however, is characterized by ultradian rhythms of 4- and 4.8-h periods. Genetic analysis of crosses between the two strains was used to examine the relative amounts of additive genetic and dominance effects for traits associated with circadian and ultradian rhythms of locomotor activity. The measured variables of the timing mechanism (amplitude c; acrophase φ; 24, 4.8-, and 4-h spectral estimates) exhibited substantial heritability, with general dominant-recessive modes of inheritance and the associated dominance variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschoff, J., Klotter, K., and Pohl, H. (1960). Circadian vocabulary.Cold Spring Harbor Symp. Quant. Biol. 25.

  • Bruce, V. G. (1972). Mutants of the biological clock inChlamydomonas reinhardi.Genetics 70:537–548.

    PubMed  Google Scholar 

  • Büttner, D., and Wollnik, F. (1984). Strain-differentiated circadian and ultradian rhythms in locomotor activity of the laboratory rat.Behav. Genet. 14:137–152.

    PubMed  Google Scholar 

  • Cavalli, L. L. (1952). An analysis of linkage in quantitative inheritance. In Reeve, E. C. R., and Waddington, C. H. (eds.),Quantitative Inheritance, London, pp. 135–144.

  • Connolly, M. S., and Lynch, C. B. (1983). Classicial genetic analysis of circadian body temperature rhythms in mice.Behav. Genet. 13:491–500.

    PubMed  Google Scholar 

  • Falconer, D. S. (1981).Introduction to Quantitative Genetics, 2nd ed., Longman, London.

    Google Scholar 

  • Feldman, J. R., and Hoyle, M. N. (1973). Isolation of circadian clock mutants ofNeurospora crassa.Genetics 75:605–613.

    PubMed  Google Scholar 

  • Festing, M. F. W. (1979).Inbred Strains in Biomedical Research, Macmillan, London.

    Google Scholar 

  • GV-SOLAS (1977). Liste von Erregern zur Spezifizierung bei SPF-Versuchstieren.Veröffentlichungen der Gesellschaft für Versuchstierkunde Nr. 2.

  • Halberg, F., and Panofsky, H. (1961). I. Thermo variance spectra; Methods and clinical illustrations.Exp. Med. Surg. 19:285–321.

    Google Scholar 

  • Halberg, F., Tong, Y. L., and Johnson, E. A. (1967). Circadian system phase—An aspect of temporal morphology; Procedures and illustrative examples. In von Mayersbach, H. (ed.),The Cellular Aspects of Biorhythms, Springer Verlag, Berlin.

    Google Scholar 

  • Henkel, W., and Mletzko, H. G. (1981). Die Cosinor-Darstellung biorhythmischer Zeitreihen und ihre Anwendung bei Belastungsuntersuchungen.Z. ges. Hyg. 27:195–198.

    Google Scholar 

  • Konopka, R. J. (1972).Circadian Clock Mutants of Drosophila melanogaster, Ph.D. thesis, California Institute of Technology, Pasadena.

    Google Scholar 

  • Konopka, r. J., and Benzer, S. (1971). Clock mutants ofDrosophila melanogaster.Proc. Natl. Acad. Sci. 68:2112–2116.

    PubMed  Google Scholar 

  • Kyriacou, C. P., and Hall, J. C. (1980). Circadian rhythm mutations inDrosophila melanogaster.Proc. Natl. Acad. Sci. 77:6729–6733.

    PubMed  Google Scholar 

  • Mather, K., and Jinks, J. L. (1982)Biometrical Genetics, 3rd ed., Chapman and Hall, London.

    Google Scholar 

  • Panofsky, H., and Halberg, F. (1961). II. Thermo variance spectra; Simplified computational example and other methodology.Exp. Med. Surg. 19:323–338.

    PubMed  Google Scholar 

  • Peleg, L., Nesbitt, M. N., and Ashkenazi, I. E. (1982). A strain difference in the daily rhythm of glyceraldehyde-3-phosphate dehydrogenase activity in the mouse.J. Comp. Physiol. 148:137–142.

    Google Scholar 

  • Plonait, H., Büttner, D., and Müschen, U. (1982). Ein kapazitiv arbeitendes System zur Messung der Bewegungsaktivität kleiner Labortiere.Z. Versuchstierkunde 24:244–249.

    Google Scholar 

  • Possidente, B., and Hegmann, J. P. (1980). Circadian rhythms under common gene control.J. Comp. Physiol. 139:121–125.

    Google Scholar 

  • Possidente, B., Hegmann, J. P., Carlson, L., and Elder, B. (1982). Pigment mutations associated with altered circadian rhythms in mice.Physiol. Behav. 28:389–392.

    PubMed  Google Scholar 

  • Whitney, G., McClearn, G. E., and DeFries, J. C. (1970). Heritability of alcohol preference in laboratorymice and rats.J. Hered. 61:165–169.

    PubMed  Google Scholar 

  • Wollnik, F. (1985). Sex differences in the daily pattern of locomotor activity.Naturwissenschaften 72:158–161.

    Google Scholar 

  • Wollnik, F., and Döhler, K.-D. (1986). Effects of adult or perinatal hormonal environment on ultradian rhythms in locomotor activity of laboratory LEW/Ztm rats.Physiol. Behav. 38:229–240.

    PubMed  Google Scholar 

  • Wright, S. (1934). The result of crosses between inbred strains of guinea-pigs, differing in the number of digits.Genetics 19:537–551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by Grant SFB 146 from the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollnik, F., Gärtner, K. & Büttner, D. Genetic analysis of circadian and ultradian locomotor activity rhythms in laboratory rats. Behav Genet 17, 167–178 (1987). https://doi.org/10.1007/BF01065995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01065995

Key Words

Navigation