Skip to main content

Assaying Circadian Locomotor Activity Rhythm in Drosophila

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Neuromethods ((NM,volume 186))

Abstract

Drosophila melanogaster has been an instrumental animal model for defining key properties of circadian rhythms and for investigating the cellular and molecular mechanisms regulating circadian timekeeping. Over the past few decades, locomotor activity rhythm has served as a standard phenotypic readout that reflects the functionality of the endogenous circadian clock. Automated, high-throughput data recording from a large number of individuals ensures the robustness and reproducibility of this assay. When combined with versatile genetic tools of the fly model, locomotor activity assay has been used repeatedly in large mutant screens and mechanistic studies to identify and characterize key molecular components of the animal circadian clock. In this chapter, we detail the workflow for conducting circadian locomotor activity assay with the most commonly used Drosophila Activity Monitoring System (DAMS). We also describe the utility of selected software to analyze and visualize locomotor activity data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson CH, Zhao C, Xu Y, Mori T (2017) Timing the day: what makes bacterial clocks tick? Nat Rev Microbiol 15:232–242. https://doi.org/10.1038/nrmicro.2016.196

    Article  CAS  Google Scholar 

  2. Swan JA, Golden SS, LiWang A, Partch CL (2018) Structure, function, and mechanism of the core circadian clock in cyanobacteria. J Biol Chem 293:5026–5034. https://doi.org/10.1074/jbc.TM117.001433

    Article  CAS  Google Scholar 

  3. Cox KH, Takahashi JS (2019) Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol 63:R93–R102. https://doi.org/10.1530/JME-19-0153

    Article  CAS  Google Scholar 

  4. Creux N, Harmer S (2019) Circadian rhythms in plants. Cold Spring Harb Perspect Biol 11:1–18. https://doi.org/10.1101/cshperspect.a034611

    Article  Google Scholar 

  5. Dunlap JC, Loros JJ (2017) Making time: conservation of biological clocks from fungi to animals. Microbiol Spect 5:FUNK-0039-2016. https://doi:10.1128/microbiolspec.FUNK-0039-2016

    Article  Google Scholar 

  6. Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21:67–84. https://doi.org/10.1038/s41580-019-0179-2

    Article  CAS  Google Scholar 

  7. Pittendrigh C, Bruce V, Kaus P (1958) On the significance of transients in daily rhythms. Proc Natl Acad Sci 44:965–973. https://doi.org/10.1073/pnas.44.9.965

    Article  CAS  Google Scholar 

  8. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116. https://doi.org/10.1073/pnas.68.9.2112

    Article  CAS  Google Scholar 

  9. Bargiello TA, Jackson FR, Young MW (1984) Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312:752–754. https://doi.org/10.1038/312752a0

    Article  CAS  Google Scholar 

  10. Hamblen M, Zehring WA, Kyriacou CP et al (1986) Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: overlapping genomic fragments that restore circadian and ultradian rhythmicity to per0 and per- mutants. J Neurogenet 3:249–291. https://doi.org/10.3109/01677068609106855

    Article  CAS  Google Scholar 

  11. Lorenz LJ, Hall JC, Rosbash M (1989) Expression of a Drosophila mRNA is under circadian clock control during pupation. Development 107:869–880

    Article  CAS  Google Scholar 

  12. Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci 40:1018–1029. https://doi.org/10.1073/pnas.40.10.1018

    Article  CAS  Google Scholar 

  13. Pittendrigh CS, Skopik SD (1970) Circadian systems. V. The driving oscillation and the temporal sequence of development. Proc Natl Acad Sci U S A 65:500–507. https://doi.org/10.1073/pnas.65.3.500

    Article  CAS  Google Scholar 

  14. Roberts SKDF (1956) “Clock” controlled activity rhythms in the fruit fly. Science 124:172. https://doi.org/10.1126/science.124.3213.172

    Article  CAS  Google Scholar 

  15. Frank KD, Zimmerman WF (1969) Action spectra for phase shifts of a circadian rhythm in Drosophila. Science 163:688–689. https://doi.org/10.1126/science.163.3868.688

    Article  CAS  Google Scholar 

  16. Tataroglu O, Emery P (2014) Studying circadian rhythms in Drosophila melanogaster. Methods 68:140–150. https://doi.org/10.1016/j.ymeth.2014.01.001

    Article  CAS  Google Scholar 

  17. Helfrich C (1986) Role of the optic lobes in the regulation of the locomotor activity rhythm of Drosophila melanogaster: behavioral analysis of neural mutants. J Neurogenet 3:321–343. https://doi.org/10.3109/01677068609106857

    Article  CAS  Google Scholar 

  18. Helfrich-Förster C (1998) Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J Comp Physiol A 182:435–453. https://doi.org/10.1007/s003590050192

    Article  Google Scholar 

  19. Martin JR, Ernst R, Heisenberg M (1999) Temporal pattern of locomotor activity in Drosophila melanogaster. J Comp Physiol A 184:73–84. https://doi.org/10.1007/s003590050307

    Article  CAS  Google Scholar 

  20. Abhilash L, Sheeba V (2019) RhythmicAlly: your R and shiny–based open-source ally for the analysis of biological rhythms. J Biol Rhythm 34:551–561. https://doi.org/10.1177/0748730419862474

    Article  Google Scholar 

  21. Schmid B, Helfrich-Förster C, Yoshii T (2011) A new ImageJ plug-in “actogramJ” for chronobiological analyses. J Biol Rhythm 26:464–467. https://doi.org/10.1177/0748730411414264

    Article  Google Scholar 

  22. Gilestro GF, Cirelli C (2009) PySolo: a complete suite for sleep analysis in Drosophila. Bioinformatics 25:1466–1467. https://doi.org/10.1093/bioinformatics/btp237

    Article  CAS  Google Scholar 

  23. Donelson N, Kim EZ, Slawson JB et al (2012) High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS One 7:e37250. https://doi.org/10.1371/journal.pone.0037250

    Article  CAS  Google Scholar 

  24. Geissmann Q, Rodriguez LG, Beckwith EJ, Gilestro GF (2019) Rethomics: an R framework to analyse high-throughput behavioural data. PLoS One 14:e0209331. https://doi.org/10.1371/journal.pone.0209331

    Article  CAS  Google Scholar 

  25. Cichewicz K, Hirsh J (2018) ShinyR-DAM: a program analyzing Drosophila activity, sleep and circadian rhythms. Commun Biol 1:25. https://doi.org/10.1038/s42003-018-0031-9

    Article  Google Scholar 

  26. Cooper KW (1950) Normal spermatogenesis in Drosophila. In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 1–61

    Google Scholar 

  27. Koh K, Evans JM, Hendricks JC, Sehgal A (2006) A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci U S A 103:13843–13847. https://doi.org/10.1073/pnas.0605903103

    Article  CAS  Google Scholar 

  28. Fujii S, Krishnan P, Hardin P, Amrein H (2007) Nocturnal male sex drive in Drosophila. Curr Biol 17:244–251. https://doi.org/10.1016/j.cub.2006.11.049

    Article  CAS  Google Scholar 

  29. Rosato E, Kyriacou CP (2006) Analysis of locomotor activity rhythms in Drosophila. Nat Protoc 1:559–568. https://doi.org/10.1038/nprot.2006.79

    Article  Google Scholar 

  30. Chiu JC, Low KH, Pike DH et al (2010) Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila. J Vis Exp 43:2157. https://doi.org/10.3791/2157

    Google Scholar 

  31. Cai YD, Xue Y, Truong CC, et al. (2020) CK2 inhibits TIMELESS nuclear export and modulates CLOCK transcriptional activity to regulate circadian rhythms. Curr Biol. https://doi.org/10.1016/j.cub.2020.10.061 [Online ahead of print]

  32. Rieger D, Shafer OT, Tomioka K, Helfrich-Förster C (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J Neurosci 26:2531–2543. https://doi.org/10.1523/JNEUROSCI.1234-05.2006

    Article  CAS  Google Scholar 

  33. Helfrich-Förster C (2000) Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster - sex-specific differences suggest a different quality of activity. J Biol Rhythm 15:135–154. https://doi.org/10.1177/074873040001500208

    Article  Google Scholar 

  34. Hanafusa S, Kawaguchi T, Umezaki Y et al (2013) Sexual interactions influence the molecular oscillations in DN1 pacemaker neurons in Drosophila melanogaster. PLoS One 8:e84495. https://doi.org/10.1371/journal.pone.0084495

    Article  Google Scholar 

  35. Chen D, Sitaraman D, Chen N et al (2017) Genetic and neuronal mechanisms governing the sex-specific interaction between sleep and sexual behaviors in Drosophila. Nat Commun 8:154. https://doi.org/10.1038/s41467-017-00087-5

    Article  Google Scholar 

  36. Wong DC, O’Neill JS (2018) Non-transcriptional processes in circadian rhythm generation. Curr Opin Physiol 5:117–132

    Article  Google Scholar 

  37. Crosby P, Partch CL (2020) New insights into non-transcriptional regulation of mammalian core clock proteins. J Cell Sci 133:jcs241174. https://doi.org/10.1242/jcs.241174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sehgal A, Price J, Man B, Young M (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606. https://doi.org/10.1126/science.8128246

    Article  CAS  PubMed  Google Scholar 

  39. Myers MP, Wager-Smith K, Wesley CS et al (1995) Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science 270:805–808. https://doi.org/10.1126/science.270.5237.805

    Article  CAS  PubMed  Google Scholar 

  40. Brown LA, Fisk AS, Pothecary CA, Peirson SN (2019) Telling the time with a broken clock: quantifying circadian disruption in animal models. Biology (Basel) 8:18

    CAS  Google Scholar 

  41. Sokolove PG, Bushell WN (1978) The chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol 72:131–160. https://doi.org/10.1016/0022-5193(78)90022-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ben L. Kunimoto for technical support. Chronobiology research in the Chiu Lab is supported by the National Institutes of Health grant R01 DK124068 to JCC. YDC is supported by the Sean & Anne Duffey and Hugh & Geraldine Dingle Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna C. Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cai, Y.D., Hidalgo Sotelo, S.I., Jackson, K.C., Chiu, J.C. (2022). Assaying Circadian Locomotor Activity Rhythm in Drosophila. In: Hirota, T., Hatori, M., Panda, S. (eds) Circadian Clocks. Neuromethods, vol 186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2577-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2577-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2576-7

  • Online ISBN: 978-1-0716-2577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics