Skip to main content
Log in

Pathobiology and clinical impact of reperfusion injury

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Reperfusion injury refers to cellular death or dysfunction caused by restoration of blood flow to previously ischemic tissue. This should be differentiated from the normal reparative processes that follow an ischemic insult. Four types of reperfusion injury have been described in the literature: (1) lethal reperfusion injury, (2) nonlethal reperfusion injury (myocardial stunning), (3) reperfusion arrhythmias, and (4) vascular injury (including the “no-reflow” phenomenon). There is continued debate whether reperfusion itself is capable of killing viable myocytes, which otherwise would have survived the ischemic insult. However, there is firm evidence for the existence of myocardial stunning following various ischemic syndromes, including reperfusion therapy for acute myocardial infarction, unstable angina pectoris, vasospastic angina, effort-induced ischemia, coronary artery bypass surgery, and cardiac transplantation. Reperfusion arrhythmia is more common after short ischemic episodes than after long ischemic periods. Thus, while reperfusion arrhythmias in the setting of acute myocardial infarction are relatively rare, reperfusion arrhythmias may be an important cause of sudden death. The “no-reflow” phenomenon has been described following reperfusion in patients with acute myocardial infarction. Three major components have been proposed as mediators of reperfusion injury: (1) oxygen free radicals, (2) the complement system, and (3) neutrophils. Numerous experimental studies have shown short-term benefit by blocking various stages of the postischemic inflammatory response. Oxygen free radicals scavangers, complement inhiition, leukocyte depletion, and the use of antibodies against various adhesion molecules have shown a reduction of infarct size in many ischemic/reperfusion experimental models. However, many of these agents failed to show a benefit in the clinical setting. Moreover, the long-term benefit of such intervention is still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Entman ML, Smith CW. Postreperfasion inflammation: A model for reaction to injury in cardiovascular disease.Cardiovasc Res 1994;28:1301–1311.

    PubMed  Google Scholar 

  2. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes.J Clin Invest 1994;94:1621–1628.

    PubMed  Google Scholar 

  3. Bolli R. Mechanism of myocardial “stunning.”Circulation 1990;82:723–738.

    PubMed  Google Scholar 

  4. Braunwald E, Kloner RA. The stunned myocardium: Prolonged postischemic ventricular dysfunction.Circulation 1982;66:1146–1149.

    PubMed  Google Scholar 

  5. Reduto LA, Smalling RW, Freund GC, Gould KL. Intracoronary infusion of streptokinase in patients with acute myocardial infarction: Effects of reperfusion on left ventricular performance.Arn J Cardiol 1981;48:403–409.

    Google Scholar 

  6. Anderson JL, Marshall HW, Bray BE, et al. A randomized trial of intracoronary streptokinase in the treatment of acute myocardial infarction.N Engl J Med 1983;308:1312–1318.

    PubMed  Google Scholar 

  7. Stack RS, Phillips HR III, Grierson DS, et al. Functional improvement of jeopardized myocardium following intracoronary streptokinase infusion in acute myocardial infarction.J Clin Invest 1983;72:84–95.

    PubMed  Google Scholar 

  8. Ito H, Tomooka T, Sakai N, et al. Time course of functional improvement in stunned myocardium in risk area in patients with reperfused anterior infarction.Circulation 1993;87:355–362.

    PubMed  Google Scholar 

  9. Watada H, Ito H, Oh H, et al. Dobutamine stress echocardiography predicts reversible dysfunction and quantitates the extent of irreversibly damaged myocardium after reperfusion of anterior myocardial infarction.J Am Coll Cardiol 1994;24:624–630.

    PubMed  Google Scholar 

  10. Jeroudi M, Cheirif J, Habib G, Bolli R. Prolonged wall motion abnormalities after chest pain at rest in patients with unstable angina: A possible manifestation of myocardial stunning.Am Heart J 1994;127:1241–1250.

    PubMed  Google Scholar 

  11. Takatsu F, Suzuki A, Nagaya T. Variant angina pectoris with prolonged electrical and mechanical stunning.Am J Cardiol 1986;58:647–649.

    PubMed  Google Scholar 

  12. Mathias P, Kerin NZ, Blevins RD, Cascase P, Rubenfire M. Coronary vasospasm as a cause of stunned myocardium.Am Heart J 1987;113:383–385.

    PubMed  Google Scholar 

  13. Fournier C, Boujon B, Hebert JL, Zamani K, Grimon G, Blondeau M. Stunned myocardium following coronary spasm.Am Heart J 1991;121:593–595.

    PubMed  Google Scholar 

  14. Marzullo P, Parodi 0, Sambuceti G, et al. Does the myocardium become “stunned” after episodes of angina at rest, angina on effort, and coronary angioplasty?Am J Cardiol 1993;71:1045–1051.

    PubMed  Google Scholar 

  15. Distante A, Rovai D, Picano E, et al. Transient changes in left ventricular mechanics during attacks of Prinzmetal's angina: A two-dimensional echocardiographic study.Am Heart J 1984;108:440–446.

    PubMed  Google Scholar 

  16. Chierchia S, Brunelli C, Simonetti I, Lazzari M, Maseri A. Sequence of events in angina at rest: primary reduction in coronary flow.Circulation 1980;61:759–768.

    PubMed  Google Scholar 

  17. Robertson WS, Feigenbaum H, Armstrong WF, Dillon JC, O'Donnell J, McHenry PW. Exercise echocardiography: A clinical practical addition in the evaluation of coronary artery disease.J Am Coll Cardiol 1983;2:1085–1089.

    PubMed  Google Scholar 

  18. Scognamiglio R, Ponchia A, Fasoli G, Miraglia G, Dalla-Volta S. Exercise-induced left ventricular dysfunction in coronary heart disease: A model for studying the stunned myocardium in man.Eur Heart J 1991;12(Suppl G):16–19.

    Google Scholar 

  19. Ambrosio G, Losi MA, Perrone-Filardi P, et al. Persistence of contractile impairment in the absence of flow abnormalities after exercise: Evidence for myocardial stunning in patients with stable angina.Circulation 1993;88(Suppl I):I-646.

    Google Scholar 

  20. Kloner RA, Allen J, Cox TA, Zheng Y, Ruiz CE. Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease.Am J Cardiol 1991;68:329–34.

    PubMed  Google Scholar 

  21. Sheiban I, Tonni S, Marini A, Trevi GP. Left ventricular dysfunction following transient ischaemia induced by transluminal coronary angioplasty. Beneficial effects of calcium antagonists against post-ischaemic myocardial stunning.Eur Heart J 1993;14(Suppl A):14–21.

    Google Scholar 

  22. Gray R, Maddhai J, Berman D, et al. Scintigraphic and hemodynamic demonstration of transient left ventricular dysfunction immediately after uncomplicated coronary artery bypass grafting.J Thorac Cardiovasc Surg 1979;77:504–510.

    PubMed  Google Scholar 

  23. Reduto LA, Lawrie GM, Reid JW, et al. Sequential postoperative assessment of left ventricular performance with gated cardiac blood pool imaging following aortocoronary bypass surgery.Am Heart J 1981;101:59–66.

    PubMed  Google Scholar 

  24. Breisblatt WM, Stein KL, Wolfe CJ, et al. Acute myocardial dysfunction and recovery: A common occurrence after coronary bypass surgery.J Am Coll Cardiol 1990;15:1261–1269.

    PubMed  Google Scholar 

  25. Hartley CJ, Rabinovitz RS, Lee HS, Chelly LE, Noon GP, Bolli R. Postoperative measurements of ventricular function in man using an implantable ultrasonic sensor. In West AI, ed.Catheter-Based Sensing and Imaging Technology. Proc SPIE 1989;1068:53–58.

  26. Uretsky BF. Physiology of the transplanted heart. In: Brest AN, ed.Cardiovascular Clinics. Philadelphia: FA Davis, 1990:23–56.

    Google Scholar 

  27. Cabrol C, Gandjbakhch I, Pavie A, et al. Current problems in cardiac transplantation.Biorned Pharmacother 1989;43:87–92.

    Google Scholar 

  28. Kloner RA. Does reperfusion injury exist in humans?J Am Coll Cardiol 1993;21:537–545.

    PubMed  Google Scholar 

  29. Hagar JM, Kloner RA. Reperfusion arrhythmias: Experimental and clinical aspects.Age of Reperfusion 1990;2:1–5.

    Google Scholar 

  30. Previtali M, Klersy C, Salerno JA, et al. Ventricular tachyarrhythmias in Prinzmetal's variant angina: Clinical significance and relation to the degree and time course ST segment elevation.Am J Cardiol 1983;52:19–25.

    PubMed  Google Scholar 

  31. Tzivoni D, Keren A, Granot S, Benhorin J, Stern S. Ventricular fibrillation caused by myocardial reperfusion in Prinzmetal's angina.Am Heart J 1983;105:323–325.

    PubMed  Google Scholar 

  32. Falk E. Unstable angina with fatal outcome: Dynamic coronary thrombosis leading to infarction and/or sudden death.Circulation 1985;17:99–108.

    Google Scholar 

  33. Myerburg RJ, Kessler KM, Mallon SM, et al. Lifethreatening ventricular arrhythmias in patients with silent myocardial ischemia due to coronary artery spasm.N Engl J Med 1992;326:1451–1455.

    PubMed  Google Scholar 

  34. Lie JT. The reasons why clinical cardiologists disregard reperfusion arrhythmias.Cardiovasc Res 1993;27:1906.

    PubMed  Google Scholar 

  35. Birnbaum Y, Sclarovsky S, Ben-Ami R, et al. Polymorphous ventricular tachycardia early after acute myocardial infarction.Am J Cardiol 1993;71:745–748.

    PubMed  Google Scholar 

  36. Lefer AM, Weyrich AS, Buerke M. Role of selectins, a new family of adhesion molecules, in ischemia-reperfusion injury.Cardiovasc Res 1994;28:289–294.

    PubMed  Google Scholar 

  37. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon following temporary coronary occlusion in the dog.J Clin Invest 1974;54:1496–1508.

    PubMed  Google Scholar 

  38. Engler RL, Schmid-Schonbein GW. Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog.Am J Pathol 1983;111:98–111.

    PubMed  Google Scholar 

  39. Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion.Circulation 1995;91:1872–1885.

    PubMed  Google Scholar 

  40. Ambrosio G, Weisman HF, Mansini JA, Becker LC. Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow.Circulation 1989;80:1846–1861.

    PubMed  Google Scholar 

  41. Kloner RA, Giacomelli F, Alker KJ, Hale SL, Matthews R, Bellows S. Influx of neutrophils into the walls of large epicardial coronary arteries in response to ischemia/reperfusion.Circulation 1991;84:1758–1772.

    PubMed  Google Scholar 

  42. Schofer J, Montz R, Mathey DG. Scintigraphic evidence of the “no-refiow” phenomenon in human begins after coronary thrombolysis.J Am Coll Cardiol 1985;5:593–598.

    PubMed  Google Scholar 

  43. Ito H, Tomooka T, Sakai N, et al. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction.Circulation 1992;85:1699–1705.

    PubMed  Google Scholar 

  44. Komamura K, Kitakaze M, Nishida K, et al. Progressive decrease in coronary vein flow during reperfusion in acute myocardial infarction: Clinical documentation of the no reflow phenomenon after successful thrombolysis.J Am Coll Cardiol 1994;24:370–377.

    PubMed  Google Scholar 

  45. Go LO, Murry CE, Richard VJ, Weischedel GR, Jennings RB, Reimer KA. Myocardial neutrophil accumulation during reperfusion after reversible or irreversible ischemic injury.Am J Physiol 1988;255:H1188-H1196.

    PubMed  Google Scholar 

  46. Kloner RA, Alker KJ. The effect of streptokinase on intramyocardial hemorrhage infarct size, and the no-reflow phenomenon during coronary reperfusion.Circulation 1984;70:513–521.

    PubMed  Google Scholar 

  47. Roberts CS, Schoen FJ, Kloner RA. Effect of coronary reperfusion on myocardial hemorrhage and infarct healing.Am J Cardiol 1983;52:610–614.

    PubMed  Google Scholar 

  48. Gertz SD, Kalan JM, Kragel AN, Roberts WC, Braunwald E, the TIMI Investigators. Cardiac morphologic findings in patients with acute myocardial infarction treated with recombinant tissue plasminogen activator.Am J Cardiol 1990;65:953–961.

    PubMed  Google Scholar 

  49. McCord JM. Free radicals and myocardial ischemia: overview and outlook.Free Radic Biol Med 1988;4:9–14.

    PubMed  Google Scholar 

  50. Zweier JL, Rayburn BK, Flaherty JT, Weisfeldt ML. Recombinant Superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium.J Clin Invest 1987;80:1728–1734.

    PubMed  Google Scholar 

  51. Jeroudi MO, Hartley CJ, Bolli R. Myocardial reperfusion injury: Role of oxygen radicals and potential therapy with antioxidants.Am J Cardiol 1994;73:2B-7B.

    PubMed  Google Scholar 

  52. McCord JM. Oxygen-derived free radicals in postischemic tissue injury.N Engl J Med 1985;312:159–163.

    PubMed  Google Scholar 

  53. Russell RC, Roth AC, Kucan JO, Zook EG. Reperfusion injury and oxygen free radicals: A review.J Reconstr Microsurg 1989;5:79–84.

    PubMed  Google Scholar 

  54. Korthuis RJ, Granger DN. Reactive oxygen metabolites, neutrophils, and the pathogenesis of ischemic-tissue/reperfusion.Clin Cardiol 1993;16(Suppl I):I19-I26.

    PubMed  Google Scholar 

  55. Kloner RA, Przyklenk K, Whittaker P. Deleterious effects of oxygen radicals in ischemia/reperfusion: Resolved and unresolved issues.Circulation 1989;80:1115–1127.

    PubMed  Google Scholar 

  56. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide: General properties and effect of hyperbaric oxygen.Biochem J 1973;134:707–716.

    PubMed  Google Scholar 

  57. Boveris A, Cadenas E. Mitochondrial production of superoxide anion and its relationship to the antimicyn-insensitive respiration.FEBS Lett 1975;54:311–314.

    PubMed  Google Scholar 

  58. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.Biochem J 1980;191:421–427.

    PubMed  Google Scholar 

  59. Ferrari R, Ceconi C, Curello A, et al. Oxygen free radicals and myocardial damage: Protective role of thiol-containing agents.Am J Med 1991;91(Suppl 3C):95S-105S.

    Google Scholar 

  60. Jarasch ED, Bruder G, Heid HW. Significance of xanthine oxidase on capillary endothelial cells.Acta Physiol Scand 1986;548:39–46.

    Google Scholar 

  61. Grum CM, Gallagher KP, Kirsh MM, Shlafer M. Absence of detectable xanthine oxidase in human myocardium.J Mol Cell Cardiol 1989;21:263–267.

    PubMed  Google Scholar 

  62. Eddy L, Stewart J, Jones HP, Engerson TD, McCord JM, Downey JM. Free radical producing enzymes, xanthine oxidase, is undetectable in human hearts.Am J Physiol 1987;253:H709-H711.

    PubMed  Google Scholar 

  63. McCord JM, Fridovich I. Superoxide dismutase: An enzymatic function for erythrocuperein (hemocuperein).J Biol Chem 1969;244:6049–6055.

    PubMed  Google Scholar 

  64. Flaherty JT. Myocardial injury mediated by oxygen free radicals.Am J Med 1991;91(Suppl 3C):79S-85S.

    PubMed  Google Scholar 

  65. Fantone JC, Ward PA. Polymorphonuclear leukocytemediated cell and tissue injury: Oxygen metabolites and their relations to human disease.Hum Pathol 1985;16:973–978.

    PubMed  Google Scholar 

  66. Yates JC, Taam GM, Singal PK, Beamish RE, Dhalla NS. Protection against adrenochrome-induced myocardial damage by various pharmacological interventions.Br J Exp Pathol 1980;61:242.

    PubMed  Google Scholar 

  67. Kim KB, Chung HH, Kim MS, Rho JR. Changes in the antioxidant defensive system during open heart operations in humans.Ann Thorac Surg 1994;58:170–175.

    PubMed  Google Scholar 

  68. Ferrari R, Ceconi C, Curello S, et al. Oxygen-mediated myocardial damage during ischemia and reperfusion: Role of the cellular defenses against oxygen toxicity.J Mol Cell Cardiol 1985;17:937–945.

    PubMed  Google Scholar 

  69. Lindower PD, Spencer KT, Caterine MR, et al. Prolonged coronary occlusion results in reduced free radical production upon reperfusion in dogs.Circulation 1994;90(Suppl):I-428.

    Google Scholar 

  70. Ambrosio G, Chiariello M. Myocardial reperfusion injury: Mechanism and management—A review.Am J Med 1991; (Suppl 3C):3C-86–3C-88S.

    Google Scholar 

  71. Davies SW, Ranjadayalan K, Wickens DG, Dormandy TL, Timmis AD. Lipid peroxidation associated with successful thrombolysis.Lancet 1990;335:741–743.

    PubMed  Google Scholar 

  72. Guarnieri C, Muscari C, Ceconi C, Flamigni F, Caldarera CM. Effect of Superoxide generation on rat heart mitochondrial pyruvate utilization.J Mol Cell Cardiol 1983;15:859–862.

    PubMed  Google Scholar 

  73. Crompton M, Andreeva L. On the involvement of a mitochondrial pore in reperfusion injury.Basic Res Cardiol 1993;88:513–523.

    PubMed  Google Scholar 

  74. Bolli R: Role of oxygen radicals in myocardial stunning. In: Kloner RA, Przyklenk K, eds.Stunned Myocardium: Properties, Mechanisms and Clinical Manifestations. New York: Marcel Dekker, 1993:155–195.

    Google Scholar 

  75. Kusuoka H, Marban E. Role of altered calcium homeostasis in stunned myocardium. In: Kloner RA, Przyklenk K, eds.Stunned Myocardium: Properties, Mechanisms and Clinical Manifestations. New York: Marcel Dekker, 1993:197–213.

    Google Scholar 

  76. Pallandi RT, Perry MA, Campbell TJ. Proarrhythmic effects of an oxygen-derived free radical generating system on action potentials recorded from guinea pig ventricular myocardium: A possible cause of reperfusion-induced arrhythmias.Circ Res 1987;61:50–54.

    PubMed  Google Scholar 

  77. Barrington PL, Meier CF Jr, Weglicki WB. Abnormal electrical activity induced by free radical generating systems in isolated cardiocytes.J Mol Cell Cardiol 1988;20:1163–1178.

    PubMed  Google Scholar 

  78. Tosaki A, Das DK. Reperfusion induced arrhythmias are caused by generation of free radicals.Cardiovasc Res 1994;28:422.

    PubMed  Google Scholar 

  79. Emerit I, Fabiani JN, Ponzio 0, Murday A, Lunel F, Carpentier A. Clastogenic factor in ischemia-reperfusion injury during open heart surgery: Protective effect of allopurinol.Ann Thorac Surg 1988;46:619–624.

    PubMed  Google Scholar 

  80. Lefer AM, Lefer DJ. Pharmacology of the endothelium in ischemia-reperfusion and circulatory shock.Annu Rev Pharmacol Toxicol 1993;33:71–90.

    PubMed  Google Scholar 

  81. Homeister JW, Lucchesi BR. Complement activation and inhibition in myocardial ischemia and reperfusion injury.Annu Rev Pharmacol Toxicol 1994;34:17–40.

    PubMed  Google Scholar 

  82. Kilgore KS, Friedrichs GS, Homeister JW, Lucchesi BR. The complement system in myocardial ischaemia/reperfusion injury.Cardiovasc Res 1994;28:437–444.

    PubMed  Google Scholar 

  83. Patel KD, Zimmerman GA, Prescott SM, McEver RP, McIntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils.J Cell Biol 1991;112:749–759.

    PubMed  Google Scholar 

  84. Dubois-Rande JL, Artigou JY, Darmon JY, et al. Oxidative stress in patients with unstable angina.Eur Heart J 1994;15:179–183.

    PubMed  Google Scholar 

  85. De Scheerder IK, VandeKraay AMM, Lamers JMJ, Koster JF, de Jong JW, Serruys PW. Myocardial malondialdehyde and uric acid release after short-lasting coronary occlusions during coronary angioplasty: Potential mechanisms for free radical generation.Am J Cardiol 1991;68:392–395.

    PubMed  Google Scholar 

  86. Roberts MJD, Young IS, Trouton TG, et al. Transient release of lipid peroxides after coronary artery balloon angioplasty.Lancet 1990;336:143–145.

    PubMed  Google Scholar 

  87. Ferrari R, Alfieri O, Curello S, et al. Occurrence of oxidative stress during reperfusion of the human heart.Circulation 1990;81:201–211.

    PubMed  Google Scholar 

  88. Grech ED, Dodd NJ, Faragher EB, Muirhead RA, Jackson MJ, Ramsdale DR. Are indirect markers an accurate measure of free radical activity following primary angioplasty reperfusion in acute myocardial infarction (abstract).J Am Coll Cardiol 1995;25:28A.

    Google Scholar 

  89. Bolli R. Oxygen-derived free radicals and myocardial reperfusion injury: An overview.Cardiovasc Drugs Ther 1991;5:249–268.

    PubMed  Google Scholar 

  90. Forman MB, Perry JM, Wilson BH, et al. Demonstration of myocardial reperfusion injury in humans: Results of a pilot study utilizing acute coronary angioplasty with perfluorochemical in anterior myocardial infarction.J Am Coll Cardiol 1991;18:911–918.

    PubMed  Google Scholar 

  91. Bolli R, Jeroudi MO, Patel BS, et al. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury.Circ Res 1989;65:607–622.

    PubMed  Google Scholar 

  92. Vitola JV, Ingram DA, Holsinger JP, Atkinson JB, Forman MB, Murray JJ. Fluosol reduces myocardial reperfusion injury by prolonged suppression of neutrophils by its detergent component (RheothRX) and not by enhancing O2 delivery.J Am Coll Cardiol 1995;25:103A.

    Google Scholar 

  93. Wall CT, Califf RM, Blankenship J, et al. Intravenous Fluosol in the treatment of acute myocardial infarction.Circulation 1994;90:114–120.

    PubMed  Google Scholar 

  94. Flaherty JT, Pitt B, Gruber JW, et al. Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction.Circulation 1994;89:1982–1991.

    PubMed  Google Scholar 

  95. Actachi H, Motomatsu K, Yara I. Effect of allopurinol (zyloric) on patients undergoing open heart surgery.Jpn Circ J 1979;43:395–401.

    PubMed  Google Scholar 

  96. Johnson WD, Kayser K, Brenowitz JB, Saedi SF. A randomized controlled trial of allopurinol in coronary bypass surgery.Am Heart J 1991;121:20–24.

    PubMed  Google Scholar 

  97. Rashid MA, William-Olsson GW. Influence of allopurinol on cardiac complications in open heart operations.Ann Thorac Surg 1991;52:127–130.

    PubMed  Google Scholar 

  98. Coghlan JG, Flitter WD, Clutton SM, et al. Allopurinol pretreatment improves postoperative recovery and reduced lipid peroxidation in patients undergoing coronary artery bypass grafting.J Thorac Cardiovasc Surg 1994;107:248–256.

    PubMed  Google Scholar 

  99. Zoran P, Juraj F, Ivana D, Reik H, Dusan N, Mihailo V. Effects of allopurinol on oxygen stress status during open heart surgery.Int J Cardiol 1994;44:123–129.

    PubMed  Google Scholar 

  100. Bochenek A, Religa Z, Spyt TJ, et al. Protective influence of pretreatment with allopurinol on myocardial function in patients undergoing coronary artery surgery.Eur J Cardiothorac Surg 1990:538–542.

  101. Parmley LF, Mufti AG, Downey JM. Allopurinol therapy of ischemic heart disease with infarct extension.Can J Cardiol 1992;8:280–286.

    PubMed  Google Scholar 

  102. Sunamori M, Tanaka H, Maruyama T, Sultan I, Sakamoto T, Suzuki A. Clinical experience of coenzyme Q10 to enhance intraoperative myocardial protection in coronary artery revascularization.Cardiovasc Drug Ther 1991;5:297–300.

    Google Scholar 

  103. Chen YF, Lin YT, Wu SC. Effectiveness of coenzyme Q10 on myocardial preservation during hypothermic cardioplegic arrest.J Thorac Cardiovasc Surg 1994;107:242–247.

    PubMed  Google Scholar 

  104. Chello M, Mastroroberto P, Romano R, et al. Protection by coenzyme Q10 from myocardial reperfusion injury during coronary artery bypass grafting.Ann Thorac Surg 1994;58:1427–1432.

    PubMed  Google Scholar 

  105. Oldham KT, Guice KS, Till GO, Ward PA. Activation of complement by hydroxyl radical in thermal injury.Surgery 1988;104:272–279.

    PubMed  Google Scholar 

  106. Rossen RD, Michael LH, Kagiyama A, et al. Mechanism of complement activation after coronary artery occlusion: Evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human Clq in vivo.Circ Res 1988;62:572–584.

    PubMed  Google Scholar 

  107. Couturier C, Haeffner-Caviallon N, Weiss L, Fiscjer E, Kazatchkine MD. Induction of cell-associated interleukin 1 through stimulation of the adhesion-promoting proteins LFA-1 (CD11a/CD18) and CR3 (CD11b/CD18) of human monocytes.Eur J Immunol 1990;20:999–1005.

    PubMed  Google Scholar 

  108. Weisman HF, Bartow T, Leppo MK, et al. Soluble human complement receptor type 1: In vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis.Science 1990;249:146–151.

    PubMed  Google Scholar 

  109. Sawa Y, Matsuda H, Shimazaki Y, et al. Evaluation of leukocyte-depleted terminal blood cardioplegic solution in patients undergoing elective and emergency coronary artery bypass grafting.J Thorac Cardiovasc Surg 1994;108:1125–1131.

    PubMed  Google Scholar 

  110. Pearl JM, Drinkwater DC, Laks H, Capouya ER, Gates RN. Leukocyte depleted reperfusion of transplanted human hearts: A randomized, double-blind clinical trial.J Heart Lung Transplant 1992;11:1082–1092.

    PubMed  Google Scholar 

  111. Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury.Circulation 1989;80:1816–1827.

    PubMed  Google Scholar 

  112. Garratt KN, Gibbons RJ, Reeder GS, Laudon DA, Lobl JK, Holmes DR Jr. Intravenous adenosine and lidocaine to limit reperfusion injury during acute myocardial infarction: Preliminary data.J Am Coll Cardiol 1995;25:104A.

    Google Scholar 

  113. Kukielka GL, Manning AM, Michael LH, et al. Reperfusion is required for the induction of cytokine and intracellular adhesion molecule-1 (ICAM-1) synthesis in ischemic hearts (abstract).Circulation 1993;88:I-5.

    Google Scholar 

  114. Siminiak T, Schroder JM, Sticherling M, Wysocki H. Interleukin-8 is not involved in the increased chemotactic activity of peripheral blood plasma during acute myocardial infarction.Basic Res Cardiol 1993;88:150–154.

    PubMed  Google Scholar 

  115. Jang Y, Lincoff AM, Plow EF, Topol EJ. Cell adhesion molecules in coronary artery disease.J Am Coll Cardiol 1994;24:1591–1601.

    PubMed  Google Scholar 

  116. Frangogiannis NG, Youker KA, Kukielka GL, et al. Resident cardiac mast cells degranulate and release performed TNF-alpha during ischemia/reperfusion injury (abstract).J Invest Med 1995;43(Suppl 2):313A.

    Google Scholar 

  117. Ma X-L, Weyrich AS, Lefer DJ, et al. Monoclonal antibody to L-selectin attenuates neutrophil accumulation and protects ischemic reperfused cat myocardium.Circulation 1993;88:649–658.

    PubMed  Google Scholar 

  118. Weyrich AS, Ma X-L, Lefer DJ, Albertine KH, Lefer AM. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury.J Clin Invest 1993;91:2620–2629.

    PubMed  Google Scholar 

  119. Lefer DJ, Flynn DM, Salzberg DB, Buda AJ. Combined inhibition of P-selectin and ICAM-1 reduces neutrophil accumulation and preserves coronary blood flow in the postischemic myocardium (abstract).J Invest Med 1995;43(Suppl 2):312A.

    Google Scholar 

  120. Buerke M, Weyrich AS, Zheng Z, Gaeta FCA, Forrest MJ, Lefer AM. Sialyl Lewisx-containing oligosaccharide attenuates myocardial reperfusion injury in cats.J Clin Invest 1994;93:1140–1148.

    PubMed  Google Scholar 

  121. Kukielka GL, Hawkins HK, Michael L, et al. Regulation of intercellular adhesion molecule-1 (ICAM-1) in ischemic and reperfused canine myocardium.J Clin Invest 1993;92:1504–1516.

    PubMed  Google Scholar 

  122. Yourker KA, Hawkins HK, Kukielka GL, et al. Molecular evidence for induction of intracellular adhesion molecule-1 in the viable border zone associated with ischemia-reperfusion injury of the dog heart.Circulation 1994;89:2736–2746.

    PubMed  Google Scholar 

  123. Seewaldt-Becker E, Rothlein R, Dammgen JW. Cdwl8 dependent adhesion of leukocytes to endothelium and its relevance for cardiac reperfusion. In: Springer TA, Anderson DC, Rosenthal AS, Rothlein R, eds.Leukocyte Adhesion Molecules: Structure, Function, and Regulation. New York: Springer-Verlag, 1989:138–148.

    Google Scholar 

  124. Lefer DJ, Suresh ML, Shandelya ML, et al. Cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury.Circulation 1993;88:1779–1787.

    PubMed  Google Scholar 

  125. Aversano T, Zhou W, Nedelman M, Nakada M, Weisman H. A chimeric IgG4 monoclonal antibody directed against CD 18 reduces infarct size in a primate model of myocardial ischemia and reperfusion.J Am Coll Cardiol 1995;25:781–788.

    PubMed  Google Scholar 

  126. Tanaka M, Brooks SE, Richard VJ, et al. Effect of antiCD18 antibody on myocardial neutrophil accumulation and infarct size after ischemia and reperfusion in dogs.Circulation 1993;87:526–535.

    PubMed  Google Scholar 

  127. Gumina RJ, Schultz J, Yao Z, et al. Antibody to PECAM-1 reduces myocardial infarct size (abstract).J Invest Med 1995;43(Suppl 2):312A.

    Google Scholar 

  128. Mikhail EA, Zweier JL, Ambrosio G. Angiotensin II receptor blockade decreases neutrophil-mediated myocardial reperfusion injury (abstract).J Invest Med 1995;43(Suppl 2):313A.

    Google Scholar 

  129. Boden WE, Sadaniantz A. Ventricular septal rupture during ibuprofen therapy for pericarditis after acute myocardial infarction.Am J Cardiol 1985;55:1631–1632.

    PubMed  Google Scholar 

  130. Roberts R, DeMello V, Sobel BE. Deleterious effects of methylprednisolone in patients with myocardial infarction.Circulation 1976;53(Suppl I):204–206.

    PubMed  Google Scholar 

  131. Hammerman H, Kloner RA, Schoen FJ, Brown EJ Jr, Hale S, Braunwald E. Indomethacin-induced scar thinning after experimental myocardial infarction.Circulation 1983;67:1290–1303.

    PubMed  Google Scholar 

  132. Werns SW, Shea MJ, Vaporciyan A, et al. Superoxide dismutase does not cause scar thinning after myocardial infarction.J Am Coll Cardiol 1987;9:898–902.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birnbaum, Y., Leor, J. & Kloner, R.A. Pathobiology and clinical impact of reperfusion injury. J Thromb Thrombol 2, 177–186 (1995). https://doi.org/10.1007/BF01062708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062708

Key words

Navigation