Skip to main content
Log in

Transepithelial potential difference in the proximal tubule of Necturus kidney

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Transepithelial potential difference (p.d.) was measured in the proximal tubule of Necturus kidney in vivo, by means of microelectrodes filled either with a 3M KCl solution or with a Ringer's solution for amphibians. The average transepithelial p.d., measured with KCl-tips, was: −1.4±2.4 mV (early convolutions), −0.1±2.0 mV (middle convolutions) and +0.1±2.4 mV (straight segment). The corresponding values obtained with Ringer's-filled microelectrodes were −2.3±1.8 mV, −1.3±1.1 mV and +0.1±1.2 mV, respectively. Tip localization into the lumen was ascertained by luminal injection of either oil (KCl electrode measurements) or artificial solutions which produced a measurable shift of transepithelial p.d. (determinations obtained with Ringer's-tips). Transepithelial p.d. in split-drops (mean reabsorptive half time 27.1±2.5 min) was −1.8±1.1 mV. The magnitude of transepithelial p.d. is discussed with respect to an equivalent electrical circuit; it is shown that high transepithelial p.d.'s are inconsistent with the known values of relative conductances of cell membranes in series and shunt pathway, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.)133, 631–658 (1956)

    Google Scholar 

  2. Anagnostopoulos, T.: Biionic potentials in the proximal tubule of Necturus kidney. J. Physiol. (Lond.)233, 375–394 (1973)

    Google Scholar 

  3. Anagnostopoulos, T.: The partial conductances of limiting membranes in epithelial tissues. J. theoret. Biol.42, 177–179 (1973)

    Google Scholar 

  4. Anagnostopoulos, T.: Anion permeation in the proximal tubule of Necturus kidney: the shunt pathway. J. Membr. Biol.24, 365–380 (1975)

    Google Scholar 

  5. Anagnostopoulos, T., Velu, E.: Electrical resistance of cell membranes in Necturus kidney. Pflügers Arch.346, 327–339 (1974)

    Google Scholar 

  6. Barrat, L. J., Rector, F. C., Jr., Kokko, J. P., Seldin, D. W.: Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J. clin. Invest.53, 454–464 (1974)

    Google Scholar 

  7. Bentzel, C. J.: Expanding drop analysis of Na and H2O flux across Necturus proximal tubule. Amer. J. Physiol.226, 118–126 (1974)

    Google Scholar 

  8. Bentzel, C. J., Anagnostopoulos, T., Pandit, H.: Necturus kidney: its response to effects of isotonic volume expansion. Amer. J. Physiol.218, 205–213 (1970)

    Google Scholar 

  9. Bott, P. A.: Micropuncture study of renal excretion of water, K, Na and Cl in Necturus. Amer. J. Physiol.203, 662–666 (1962)

    Google Scholar 

  10. Boulpaep, E. L.: Permeability changes of the proximal tubule of Necturus during saline loading. Amer. J. Physiol.222, 517–531 (1972)

    Google Scholar 

  11. Boulpaep, E. L., Seely, J. F.: Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Amer. J. Physiol.221, 1084–1096 (1971)

    Google Scholar 

  12. Burg, M. B., Orloff, J.: Electrical potential differences across proximal convoluted tubules. Amer. J. Physiol.219, 1714–1716 (1970)

    Google Scholar 

  13. Cereijido, M., Rabito, C. A., Rodríguez Boulan, E., Rotunno, C. A.: The sodium transporting compartment of the epithelium of frog skin. J. Physiol. (Lond.)237, 555–571 (1974)

    Google Scholar 

  14. Eigler, F. W.: Short-circuit measurements in proximal tubule of Necturus kidney. Amer. J. Physiol.201, 157–163 (1961)

    Google Scholar 

  15. Frömter, E.: Progress in microelectrode techniques for kidney tubules. Yale. J. Biol. Med.45, 414–425 (1972)

    Google Scholar 

  16. Frömter, E.: Pathways and driving forces for salt and water absorption from rat didney proximal tubule. European Colloquium on Nephron Physiology (1. vol.) pp. 15–26. Paris: I.N.S.E.R.M. Editions, 1974

    Google Scholar 

  17. Frömter, E., Gessner, K.: Free-flow potential profile along rat didney proximal tubule. Pflügers Arch.351, 69–83 (1974)

    Google Scholar 

  18. Frömter, E., Hegel, U.: Transtubuläre Potentialdifferenzen an proximalen und distalen Tubuli der Ratteniere. Pflügers Arch. ges. Physiol.291, 107–120 (1966)

    Google Scholar 

  19. Giebisch, G.: Measurements of pH, chloride and inulin concentrations in proximal tubule fluid of Necturus. Amer. J. Physiol.185, 171–174 (1956)

    Google Scholar 

  20. Giebisch, g.: Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J. gen. Physiol.44, 659–678 (1961)

    Google Scholar 

  21. Khuri, R., Hajjar, J. J., Agulian, S., Bogharian, K., Kalloghlian, A., Bizri, H.: Intracellular potassium in cells of the proximal tubule of Necturus maculosus. Pflügers Arch.338, 73–80 (1972)

    Google Scholar 

  22. Kokko, J. P.: Proximal tubule potential difference. Dependence on glucose, HCO3 and amino acids. J. clin. Invest.52, 1362–1367 (1973)

    Google Scholar 

  23. Oken, D. E., Solomon, A. K.: Single proximal tubules of Necturus kidney. VI. Nature of potassium transport. Amer. J. Physiol.204, 377–380 (1963)

    Google Scholar 

  24. Schultz, S. G.: Electrical potential difference and electromotive forces in epithelial tissues. J. gen. Physiol.59, 794–798 (1972)

    Google Scholar 

  25. Shipp, J. C., Hanenson, I. B., Windhager, E. E., Schatzmann, H. J., Whittembury, G., Yoshimura, H., Solomon, A. K.: Single proximal tubules of the Necturus kidney. Methods for micropuncture and microperfusion. Amer. J. Physiol.195, 563–569 (1958)

    Google Scholar 

  26. Spring, K. R., Paganelli, C. V.: Sodium flux in Necturus proximal tubule under voltage clamp. J. gen. Physiol.60, 181–201 (1972)

    Google Scholar 

  27. Walker, A. M., Hudson, C. L., Findley, T., Jr., Richards, A. N.: The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia. Amer. J. Physiol.118, 121–129 (1937)

    Google Scholar 

  28. Whittembury, G., Windhager, E. E.: Electrical potential difference measurements in perfused single proximal tubules of Necturus kidney. J. gen. Physiol.44, 679–687 (1961)

    Google Scholar 

  29. Wilbrandt, W.: Electrical potential measurements across the wall of kidney tubules of Necturus. J. cell. comp. Physiol.11, 425–431 (1938)

    Google Scholar 

  30. Windhager, E. E., Boulpaep, E. L., Giebisch, G.: Electrophysiological studies on single nephrons. In: Proc. Internat. Cong. Nephrol. 3rd, Washington, D.C. 1966 (J. S. Handler, ed.), pp. 35–47, Basel: S. Karger 1967

    Google Scholar 

  31. Windhager, E. E., Giebisch, G.: Electrophysiology of the nephron. Physiol. Rev.45, 214–244 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelman, A., Anagnostopoulos, T. Transepithelial potential difference in the proximal tubule of Necturus kidney. Pflugers Arch. 363, 105–111 (1976). https://doi.org/10.1007/BF01062277

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062277

Key words

Navigation