Skip to main content
Log in

Pharmacokinetic modeling of the anticonvulsant response of oxazepam in rats using the pentylenetetrazol threshold concentration as pharmacodynamic measure

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

This investigation developed strategies along which the anticonvulsant effect of oxazepam in the rat could be pharmacokinetically modeled. After determination of the pharmacokinetics of oxazepam, which could be described with a two-compartment model (halflives of distribution and elimination 6 and 52 min, respectively), the drug was administered iv to groups of animals to achieve a serum concentration range of 0.1–2.5 mg/L at 10, 45, and 120 min after administration. At these time points pentylenetetrazol (PTZ) was infused slowly until the first myoclonic jerk occurred. The anticonvulsant response, expressed as the elevation of the serum or brain threshold concentration of PTZ, was modeled versus the serum (both total and free) and brain oxazepam concentration, according to the sigmoid E max model. The total serum and brain oxazepam EC50 values are about 0.5 mg/L and 1.1 mg/kg, respectively, and E max 120 mg/L PTZ. No marked differences in pharmacodynamic parameters between the three time groups were found, which indicates that serum and brain are pharmacokinetically indistinguishable from the effect compartment, that there is no (inter) activity of oxazepam metabolites and absence of development of acute tolerance during the investigated time frame. An interfering role of metabolites was also excluded by a direct radioreceptor assay of oxazepam, yielding very similar results as the specific Chromatographic assay. It is concluded that the concentration-anticonvulsant effect relationship of oxazepam can satisfactorily be described by the sigmoid E max model, when utilizing the employed experimental strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Levy. Pharmacokinetic and pharmacodynamic considerations in therapeutic drug concentration monitoring. In D. D. Breimer and P. Speiser (eds.),Topics in Pharmaceutical Sciences, Elsevier, Amsterdam, 1983, pp. 43–50.

    Google Scholar 

  2. J. Dingemanse, M. Danhof, and D. D. Breimer. Pharmacokinetic-pharmacodynamic modelling of CNS drug effects. An overview.Pharmacol. Ther. (in the press.)

  3. M. Danhof and G. Levy. Kinetics of drug action in disease states. I. Effect of infusion rate on phenobarbital concentrations in serum, brain and cerebrospinal fluid of normal rats at onset of loss of righting reflex.J. Pharmacol. Exp. Ther. 229:44–50 (1984).

    CAS  PubMed  Google Scholar 

  4. J. Dingemanse, D. Thomassen B. H. Mentink, and M. Danhof. Strategy to assess the role of (inter)active metabolites in pharmacodynamic studiesin vivo: A model study with heptabarbital.J. Pharm. Pharmacol. (in press).

  5. M. Hisaoka, M. Danhof, and G. Levy. Kinetics of drug action in disease states. VII. Effect of experimental renal dysfunction on the pharmacodynamics of ethanol in rats.J. Pharmacol Exp. Ther. 232:717–721 (1985).

    CAS  PubMed  Google Scholar 

  6. I. M. Ramzan and G. Levy. Kinetics of drug action in disease states. XIV. Effect of infusion rate on pentylenetetrazol concentrations in serum, brain and cerebrospinal fluid of rats at onset of convulsions.J. Pharmacol Exp. Ther. 234:624–628 (1985).

    CAS  PubMed  Google Scholar 

  7. I. M. Ramzan and G. Levy. Kinetics of drug action in disease states. XVI. Pharmacodynamics of theophylline-induced seizures in rats.J. Pharmacol Exp. Ther. 236:708–713 (1986).

    CAS  PubMed  Google Scholar 

  8. E. A. Swinyard and J. H. Woodhead. Experimental detection, quantification, and evaluation of anticonvulsants. In D. M. Woodbury, J. K. Penry, and C. E. Pippenger (eds.),Antiepileptic Drugs, Raven Press, New York, 1982, pp. 111–126.

    Google Scholar 

  9. W. Haefely, L. Pieri, P. Polc, and R. Schaffner. General pharmacology and neuropharmacology of benzodiazepine derivatives. In F. Hoffmeister and G. Stille (eds.),Handbook of Experimental Pharmacology, Vol. 55/II, Springer, Berlin, 1981, pp. 13–262.

    Google Scholar 

  10. C. Bellantuono, V. Reggi, G. Tognoni, and S. Garattini. Benzodiazepines: Clinical pharmacology and therapeutic use.Drugs 19:195–219 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. J. R. Weeks and J. D. Davis. Chronic intravenous cannulas for rats.J. Appl. Physiol. 19:540–541 (1964).

    CAS  PubMed  Google Scholar 

  12. D. E. Woolley and P. S. Timiras. Estrous and circadian periodicity and electroshock convulsions in rats.Am. J. Physiol. 202:379–382 (1962).

    CAS  PubMed  Google Scholar 

  13. M. J. Orloff, H. L. Williams, and C. C. Pfeiffer. Timed intravenous infusion of metrazol and strychnine for testing anticonvulsant drugs.Proc. Soc. Exp. Biol Med. 70:254–257 (1949).

    Article  CAS  PubMed  Google Scholar 

  14. R. C. Chou and G. Levy. Effect of heparin or salicylate infusion on serum protein binding and on concentrations of phenytoin in serum, brain and cerebrospinal fluid of rats.J. Pharmacol. Exp. Ther. 219:42–48 (1981).

    CAS  PubMed  Google Scholar 

  15. D. W. Esplin and D. M. Woodbury. The fate and excretion of C14-labeled pentylenetetrazol in the rat, with comments on analytical methods for pentylenetetrazol.J. Pharmacol. Exp. Ther. 118:129–138 (1956).

    CAS  PubMed  Google Scholar 

  16. O. H. Lowry, H. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275 (1951).

    CAS  PubMed  Google Scholar 

  17. R. J. Francis. ELSMOS-An extended least-squares modelling system in FORTRAN IV for mini- or micro-computer implementation.Comp. Prog. Biomed. 18:43–50 (1984).

    Article  CAS  Google Scholar 

  18. S. Bolton.Pharmaceutical Statistics, Marcel Dekker, New York, 1985.

    Google Scholar 

  19. N. H. G. Holford and L. B. Sheiner. Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models.Clin. Pharmacokin. 6:429–453 (1981).

    Article  CAS  Google Scholar 

  20. E. A. Van der Velde. Orthogonal regression equation. In A. M. H. P. Van den Besselaar, H. R. Gralnick, and S. M. Lewis (eds.),Thromboplastin Calibration and Oral Anticoagulant Control, Martinus Nijhoff, The Hague, 1984, pp. 25–39.

    Chapter  Google Scholar 

  21. P. L. Morselli, G. B. Cassano, G. F. Placidi, G. B. Muscettola, and M. Rizzo. Kinetics of the distribution of14C-diazepam and its metabolites in various areas of cat brain. In S. Garattini, E. Mussini, and L. O. Randall (eds.),The Benzodiazepines, Raven Press, New York, 1973, pp. 129–143.

    Google Scholar 

  22. S. Garattini. Active drug metabolites. An overview of their relevance in clinical pharmacokinetics.Clin. Pharmacokin. 10:216–227 (1985).

    Article  CAS  Google Scholar 

  23. E. H. Ellinwood, M. Linnoila, M. E. Easier, and D. W. Molter. Profile of acute tolerance to three sedative anxiolytics.Psychopharmacology 79:137–141 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. D. J. Nutt, P. J. Cowen. and A. R. Green. On the measurement in rats of the convulsant effect of drugs and the changes which follow electroconvulsive shock.Neuropharmacology 19:1017–1023 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. D. J. Nutt, S. C. Taylor, and H. J. Little. Optimizing the pentetrazol infusion test for seizure threshold measurement.J. Pharm. Pharmacol. 38:697–698 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. L. A. Woodbury and V. D. Davenport. Design and use of a new electroshock seizure apparatus, and analysis of factors altering seizure threshold pattern.Arch. Int. Pharmacodyn. Ther. 92:97–107 (1952).

    CAS  PubMed  Google Scholar 

  27. F. Marcucci, M. L. Airoldi, E. Mussini, and S. Garattini. Brain levels of metrazol determined with a new gas chromatographic procedure.Eur. J. Pharmacol. 16:219–221 (1971).

    Article  CAS  PubMed  Google Scholar 

  28. W. D. Yonekawa, H. J. Kupferberg, and D. M. Woodbury. Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazol levels in mice.J. Pharmacol. Exp. Ther. 214:589–593 (1980).

    CAS  PubMed  Google Scholar 

  29. S. Garattini, E. Mussini, F. Marcucci, and A. Guaitani. Metabolic studies on benzodiazepines in various animal species. In S. Garattini, E. Mussini, and L. O. Randall (eds.),The Benzodiazepines, Raven Press, New York, 1973, pp. 75–97.

    Google Scholar 

  30. P. T.-H. Wong, Y. L. Yoong, and M. C. E. Gwee. Acute tolerance to diazepam induced by benzodiazepines.Clin. Exp. Pharmacol. Physiol. 13:1-8 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. D. P. Crankshaw and C. Raper. The effect of solvents on the potency of chlordiazepoxide, diazepam, medazepam and nitrazepam.J. Pharm. Pharmacol. 23:313–321 (1971).

    Article  CAS  PubMed  Google Scholar 

  32. K. J. Davis and P. M. Jenner. Toxicity of three drug solvents.Toxicol. Appl. Pharmacol 1:576–578 (1959).

    Article  CAS  PubMed  Google Scholar 

  33. A. Kutzsche. Zur Toxikologie des Dimethylformamids.Arzneim. Forsch. 15:618–624 (1965).

    CAS  Google Scholar 

  34. F. Marcucci, E. Mussini, R. Fanelli, and S. Garattini. Species differences in diazepam metabolism-I. Metabolism of diazepam metabolites.Biochem. Pharmacol. 19:1847–1851 (1970).

    Article  CAS  PubMed  Google Scholar 

  35. J. R. M. Haigh, J. P. Gent, and R. Calvert. Plasma concentrations of clobazam and its N-desmethyl metabolite; protection against pentetrazol-induced convulsions in mice.J. Pharm. Pharmacol. 36:636–638 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. S. M. Taylor, G. D. Bennett, L. C. Abbott, and R. H. Finnell. Seizure control following administration of anticonvulsant drugs in the quaking mouse.Eur. J. Pharmacol. 118:163–170 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. G. M. Pollack and D. D. Shen. A timed intravenous pentylenetetrazol infusion seizure model for quantitating the anticonvulsant effect of valproic acid in the rat.J. Pharmacol. Methods 13:135–146 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. R. M. Arendt, D. J. Greenblatt, R. H. DeJong, J. D. Bonin, D. R. Abernethy, B. L. Ehrenberg, H. G. Giles, E. M. Sellers, and R. I. Shader.In vitro correlates of benzodiazepine cerebrospinal fluid uptake, pharmacodynamic action and peripheral distribution.J. Pharmacol. Exp. Ther. 227:98–106 (1983).

    CAS  PubMed  Google Scholar 

  39. C. Harriton, L. Ciesielski, S. Simler, M. Valli, G. Jadot, S. Gobaille, E. Mesdjian, and P. Mandel. Distribution of sodium valproate and GABA metabolism in CNS of the rat.Biopharm. Drug Disp. 5:409–414 (1984).

    Article  Google Scholar 

  40. R. P. Simon, N. L. Benowitz, J. Bronstein, J., and P. Jacob. Increased brain uptake of lidocaine during bicuculline-induced status epilepticus in rats.Neurology 32:196–199 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. R. P. Simon, N. L. Benowitz, and S. Culala. Motor paralysis increases brain uptake of lidocaine during status epilepticus.Neurology 34:384–387 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. R. P. Simon, N. Benowitz, R. Hedlund, and J. Copeland. Influence of the blood-brainpH gradient on brain phenobarbital uptake during status epilepticus.J. Pharmacol. Exp. Ther. 234:830–835 (1985).

    CAS  PubMed  Google Scholar 

  43. M. Clozel, J. L. Daval, P. Monin, C. Dubruc, P. L. Morselli, and P. Vert. Regional cerebral blood flow during bicuculline-induced seizures in the newborn piglet: effect of phenobarbital.Dev. Pharmacol. Ther. 8:189–199 (1985).

    CAS  PubMed  Google Scholar 

  44. B. Oztas and U. Sandalci. Blood-brain barrier permeability after pentylenetetrazol and electrically induced seizure. IRCS (Int. Res. Commun. Syst.)Med. Sci. Biochem. 12:488–489 (1984).

    Google Scholar 

  45. E. M. Sellers, C. A. Naranjo, V. Khouw, and D. J. Greenblatt. Binding of benzodiazepines to plasma proteins. In E. Usdin, P. Skolnick, J. F. Tallman, D. Greenblatt, and S. M. Paul (eds.),Pharmacology of Benzodiazepines, Macmillan, London, 1982, pp. 271–284.

    Google Scholar 

  46. S. F. Sisenwine, C. O. Tio, S. R. Shrader, and H. W. Ruelius. The biotransformation of oxazepam in man, miniature swine and rat.Arzneim. Forsch. 22:682–687 (1972).

    CAS  Google Scholar 

  47. S. F. Sisenwine and C. O. Tio. The metabolic disposition of oxazepam in rats.Drug Metab. Dispos. 14:41–45 (1986).

    CAS  PubMed  Google Scholar 

  48. D. J. Greenblatt. Clinical pharmacokinetics of oxazepam and lorazepamClin. Pharmacokin. 6:89–105 (1981).

    Article  CAS  Google Scholar 

  49. L. Aaltonen and M. Scheinin. Application of radioreceptor assay of benzodiazepines for toxicology.Acta Pharmacol. Toxicol. 50:206–212 (1982).

    Article  CAS  Google Scholar 

  50. D. B. Barnett and S. R. Nahorski. Current techniques: drug assays in plasma by radio- receptor techniques.Trends Pharmacol. Sci. 4:407–409 (1983).

    Article  CAS  Google Scholar 

  51. M. K. Ticku. Convulsant binding sites on the benzodiazepine/GABA receptor. In R. W. Lsen and J. C. Venter (eds.),Benzodiazepine/GABA Receptors and Chloride Channels. Structural and Functional Properties, Alan R. Liss, New York, 1986, pp. 195–207.

    Google Scholar 

  52. R. Ramanjaneyulu and M. K. Ticku. Interactions of pentamethylenetetrazole and tetrazole analogues with the picrotoxinin site of the benzodiazepine-GABA receptor-ionophore complex.Eur. J. Pharmacol. 98:337–345 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. M. Rehavi, P. Skolnick, and S. M. Paul. Effects of tetrazole derivatives on [3H]diazepam bindingin vitro: correlation with convulsant potency.Eur. J. Pharmacol. 78:353–356 (1982).

    Article  CAS  PubMed  Google Scholar 

  54. G. Blaschke and H. Markgraf. Chromatographische Racemattrennungen, IX. Chlortalidon-, Chlortalidon-methylether und Oxazepam-Enantiomere.Chem. Ber. 113:2031–2035 (1980).

    Article  CAS  Google Scholar 

  55. J. L. Waddington and F. Owen. Stereospecific benzodiazepine receptor binding by the enantiomers of oxazepam sodium hemisuccinate.Neuropharmacology 17:215–216 (1978).

    Article  CAS  PubMed  Google Scholar 

  56. H. Kalant, A. E. LeBlanc, and R. J. Gibbins. Tolerance to, and dependence on, some non-opiate psychotropic drugs.Pharmacol. Rev. 23:135–191 (1971).

    CAS  PubMed  Google Scholar 

  57. Y. L. Yoong, H. S. Lee, M. C. E. Gwee, and P. T.-H. Wong. Acute tolerance to diazepam in mice: pharmacokinetic considerationsClin. Exp. Pharmacol. Physiol. 13:153–158 (1986).

    Article  CAS  PubMed  Google Scholar 

  58. R. G. Lister and D. J. Nutt. Mice and rats are sensitized to the proconvulsant action of a benzodiazepine-receptor inverse agonist (FG7142) following a single dose of lorazepam.Brain Res. 379:364–366 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. M. I. Gluckman and B. L. Baxter. Comparative effects of single and repeat dose administration of minor tranquilizers.Psychopharmacol. Bull. 7:26–27 (1971).

    CAS  Google Scholar 

  60. S. A. Henauer, E. J. Gallaher, and L. O. Hollister. Long-lasting single-dose tolerance to neurologic deficits induced by diazepam.Psychopharmacology 82:161–163 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dingemanse, J., Sollie, F.A.E., Breimer, D.D. et al. Pharmacokinetic modeling of the anticonvulsant response of oxazepam in rats using the pentylenetetrazol threshold concentration as pharmacodynamic measure. Journal of Pharmacokinetics and Biopharmaceutics 16, 203–228 (1988). https://doi.org/10.1007/BF01062261

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062261

Key words

Navigation