Skip to main content
Log in

An extended physiological pharmacokinetic model of methadone disposition in the rat: Validation and sensitivity analysis

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

An extended physiological model of methadone disposition in the rat was constructed and evaluated in various tests of model validity. A separate circulation model of the fetus was included due to the large tissue concentration differences obtained after a constant rate infusion but also to propose the use of this type of model for optimization of toxicological tests. Simulations were performed with the animal model and scaled-up models of humans to elucidate the determinants of methadone dispostion. The rationale of the use of an extended model for methadone was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Teorell. Kinetics of distribution of substances administered to the body: I. The extravascular modes of administration.Arch. Int. Pharmacodyn. Ther. 57:205–225 (1937).

    CAS  Google Scholar 

  2. E. J. O'Flaherty.Toxicants and Drugs: Kinetics and Dynamics, Wiley Interscience, New York, 1981.

    Google Scholar 

  3. R. Bellman, J. A. Jacquez, and R. Kalabra. Some mathematical aspects of chemotherapy: I. Organ models.Bull. Math. Biophys. 22:181–198 (1960).

    Article  Google Scholar 

  4. K. B. Bischoff and B. Brown. Drug distribution in mammals.Chem. Eng. Prog. Symp. Ser. 62:33–45 (1966).

    CAS  Google Scholar 

  5. D. S. Riggs.The Mathematical Approach to Physiological Problems, Williams and Wilkins, Baltimore, 1963.

    Google Scholar 

  6. K. B. Bischoff and D. L. Dedrick. Thiopental pharmacokinetics.J Pharm. Sci. 57:1346–1351 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. L. E. Gerlowski and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications.J. Pharm. Sci. 72:1103–1127 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate kinetics.J. Pharm. Sci. 59:149–154 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. K. B. Bischoff. Some fundamental considerations of the applications of pharmacokinetics to cancer chemotherapy.Cancer Chemother. Rep. Part I 59:777–793 (1975).

    CAS  Google Scholar 

  10. L. Jansky and H. S. Hart. Cardiac output and organ blood flow in warm- and cold-acclimated rats exposed to cold.Can. J. Physiol. Pharmacol. 46:653–659 (1968).

    Article  CAS  PubMed  Google Scholar 

  11. J. L. Gabrielsson, P. Johansson, U. Bondesson, and L. K. Paalzow. Analysis of methadone disposition in the pregnant rat by means of a physiological flow model.J. Pharmacokin. Biopharm. 13:355–372 (1985).

    Article  CAS  Google Scholar 

  12. S. J. Liu, K. Z. C. Chen, and R. I. H. Wang. Effects of desipramine, fecal and urinary excretion of methadone in the rat.J. Pharmacol. Exp. Ther. 198:308–317 (1976).

    CAS  PubMed  Google Scholar 

  13. J. V. Wait and F. Clarke III.DARE-P, A Portable Digital Simulation System, University of Arizona, 1974.

  14. E. R. Carson, C. Cobelli, and L. Finkelstein.The Mathematical Modeling of Metabolic and Endocrine Systems, Wiley, New York, 1983, p. 218.

    Google Scholar 

  15. R. L. Dedrick. Inter-species scaling of regional drug delivery.J. Pharm. Sci. 75:1047–1052 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. E. D. Adolph. Quantitative relations in the physiological constitutions of mamals.Science 109:579–585 (1949).

    Article  CAS  PubMed  Google Scholar 

  17. S. L. Lindstedt and W. A. Calder III. Body size, physiological time and longevity of homeothermic animals.Quart. Rev. Biol. 56:1–16 (1981).

    Article  Google Scholar 

  18. E. F. Yates and P. N. Kugler. Similarity principles and intrinsic geometries—Contrasting approaches to interspecies scaling.J. Pharm. Sci. 75:1019–1027 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. D. E. Hutchings, H. F. Hunt, J. P. Towney, T. S. Rosen, and H. S. Gorinson. Methadone during pregnancy in the rat: Dose level effects on maternal and perinatal mortality and growth in the offspring.J. Pharmacol. Exp. Ther. 197:171–179 (1975).

    Google Scholar 

  20. W. Banner. General principles of clinical pharmacology of the fetus. In H. P. Kuemmerle and K. Brendel (eds.),Clinical Pharmacology in Pregnancy, Thieme-Stratton, New York, 1984, p.132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Svenssons Foundation for Medical Research, the Royal Hvitfeld Establishment, and C. D. Carlssons Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrielsson, J.L., Groth, T. An extended physiological pharmacokinetic model of methadone disposition in the rat: Validation and sensitivity analysis. Journal of Pharmacokinetics and Biopharmaceutics 16, 183–201 (1988). https://doi.org/10.1007/BF01062260

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062260

Key words

Navigation