Skip to main content
Log in

Monte carlo calculations of the conformal charge

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The conformal charge is an important quantity which characterizes the nature of the two-dimensional phase transition. We report a first attempt to use a new numerical method to calculate the conformal charge. In this paper, we apply our method to the 2-dimensional,φ 4, continuous-spin Ising model. By varying the parameters in the Hamiltonian, one can change continuously from the known Gaussian limit to the Ising limit. It is well known that the critical points for these two systems are not in the same universality class. We study this behavior for the Gaussian model, the single-well φ4 model, the border model, and the double-wellφ 4 model for a large lattice. Our results, while giving a good general picture, are not so far sufficient to differentiate whether the non-Gaussian cases studied belong to the Ising model universality class or not. Further studies of other lattice sizes should serve to improve greatly our conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,Nucl. Phys. B 241:333 (1984).

    Google Scholar 

  2. J. L. Cardy,Nucl. Phys. B 240[FS12]:514 (1984).

    Google Scholar 

  3. D. Friedan, Z. Qiu, and S. Shenker,Phys. Rev. Lett. 52:1575 (1984).

    Google Scholar 

  4. J. L. Cardy,J. Phys. A 17:L385 (1984).

    Google Scholar 

  5. H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale,Phys. Rev. Lett. 56:742 (1986).

    Google Scholar 

  6. I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  7. A. B. Zamolodchikov,JEPT Lett. 43:730 (1986).

    Google Scholar 

  8. J. L. Cardy,Phys. Rev. Lett. 60:2709 (1988).

    Google Scholar 

  9. R. R. P. Singh and G. A. Baker, Jr.,Phys. Rev. Lett. 66:1 (1991); G. A. Baker, Jr., and R. R. P. Singh,Physica A 177:123 (1991).

    Google Scholar 

  10. J. L. Cardy, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987), p. 55.

    Google Scholar 

  11. G. A. Baker, Jr.,J. Math. Phys. 24:143 (1983);J. Phys. A 17:L621 (1984); G. A. Baker, Jr., and J. D. Johnson,J. Phys. A 17:L275 (1984).

    Google Scholar 

  12. M. Barma and M. E. Fisher,Phys. Rev. Lett. 53:1935 (1984);Phys. Rev. B 31:5954 (1985).

    Google Scholar 

  13. G. A. Baker, Jr.,Phys. Rev. Lett. 60:1844 (1988).

    Google Scholar 

  14. A. Milchev, D. W. Heermann, and K. Binder,J. Stat. Phys. 44:749 (1986).

    Google Scholar 

  15. R. Toral and A. Chakrabari,Phys. Rev. B 42:2445 (1990).

    Google Scholar 

  16. A. D. Brace,J. Phys. A 18:L873 (1985).

    Google Scholar 

  17. G. A. Baker, Jr., and J. M. Kincaid,J. Stat. Phys. 24:469 (1981).

    Google Scholar 

  18. Xidi Wang, D. K. Campbell, and J. E. Gubernatis, Symmetry breaking in a quantum double-well chain: Application to hydrogen bonded materials, in preparation.

  19. S. Duane,Nucl. Phys. B 257:652 (1985); S. Duane and J. B. Kogut,Nucl. Phys. B 275:398 (1986); S. Duane, A. D. Kennedy, B. J. Pendelton, and D. Roweth,Phys. Lett. B 195:216 (1987).

    Google Scholar 

  20. A. E. Ferdinand, Thesis, Cornell University, Ithaca, New York (1967).

    Google Scholar 

  21. G. A. Baker, Jr., and J. D. Johnson,J. Phys. A 17:L275 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Baker, G.A. Monte carlo calculations of the conformal charge. J Stat Phys 69, 1069–1095 (1992). https://doi.org/10.1007/BF01058762

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01058762

Key words

Navigation