Skip to main content
Log in

Clinical application of18F-FUdR in glioma patients — PET study of nucleic acid metabolism

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Summary

Positron emission tomography was used to investigate the metabolism of nucleic acids by18F-fluoro-2′-deoxyuridine (18F-FUdR) in 22 patients with gliomas. Sixteen cases of high grade glioma clearly demonstrated a region of high activity with a differential absorption rate (DAR) of 0.64 ± 0.34. Six cases of low grade glioma failed to reveal a positive image of the tumor and the DAR in tumor was 0.21 ± 0.042 (p < 0.01). This PET-18F-FUdR study succeeded in differentiating high and low grade gliomas from the view point of nucleic acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salford LG, Brun A, Nirfalk S: Ten-year survival among patients with supratentorial astrocytoma grade III and IV. J Neurosurg 69: 506–509, 1988

    Google Scholar 

  2. Alavi JB, Alavi A, Goldberg HI, Dann R, Hickey W, Reivich M: Sequential computerized tomography and positron emission tomography studies in a patient with malignant glioma. Nucl Med Com 8: 457–468, 1987

    Google Scholar 

  3. Beaney RP, Brooks DJ, Leenders KL, Thomas DGT, Jones T, Hainan K: Blood flow and oxygen utilization in the contralateral cerebral cortex of patients with untreated intracranial tumours as studied by positron emission tomography, with observations on the effect of decompressive surgery. J Neurol Neurosurg Psychi 48: 310–319, 1985

    Google Scholar 

  4. Bergstrom M, Collins VP, Ehrin E, Ericson K, Eriksson L, Greitz T, Halldin C, von Holst H, Langstrom B, Lija A, Lundqvist H, Nagren K: Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 6: 1062–1066, 1983

    Google Scholar 

  5. Bergstrom M, Ericson K, Hagenfeldt L, Mosskin M, von Holst H, Noren G, Eriksson L, Ehrin E, Johnstrom P: PET study of methionine accumulation in glioma and normal brain tissue: competition with branched amino acids. J Comput Assist Tomogr 11: 208–213, 1987

    Google Scholar 

  6. Brooks DJ, Beaney RP, Lammertsma AA, Turton DR, Marshall J, Thomas DGT, Jones T: Studies on regional cerebral hematocrit and blood flow in patients with cerebral tumours using positron emission tomography. Microvascular Res 31: 267–276, 1986

    Google Scholar 

  7. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP: Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurol 32: 1323–1329, 1982

    Google Scholar 

  8. Di Chiro G: Positron emission tomography using [18F]fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22: 360–371, 1986

    Google Scholar 

  9. Di Chiro G, Hatazawa J, Katz DA, Rizzoli H, Michele DJ: Glucose utilization by intracranial memningiomas as an index of tumor aggressivity and probability of recurrence: A PET study. Radiol 164: 521–526, 1987

    Google Scholar 

  10. Hubner KF, Purvis JT, Mahaley SM Jr, Robertson JT, Rogers S, Gibbs WD, King P, Partain CL: Brain tumor imaging by positron emission computed tomography using11C-labeled amino acids. J Comput Assit Tomogr 6: 540–550, 1982

    Google Scholar 

  11. Ito M, Lammertsma AA, Wise RJS, Bernardi S, Frackowiak RSJ, Heather JD, McKenzie CG, Thomas DGT, Jones T: Measurement of regional cerebral blood flow and oxygen utilization in patients with cerebral tumours using15O and positron emission tomography: Analytical techniques and preliminary results. Neuroradiol 23: 63–74, 1982

    Google Scholar 

  12. Kameyama M, Shirane R, Itoh J, Sato K, katakura R, Yoshimoto T, Hatazawa J, Itoh M, Ido T: The accumulation of11C-methionine in cerebral glioma patients studied with PET. Acta Neurochir (Wien) 104: 8–12, 1990

    Google Scholar 

  13. Lammertsma AA, Wise RJS, Jones T:In vivo measurements of regional cerebral blood flow and blood volume in patients with brain tumors using positron emission tomography. Acta Neurochir 69: 5–13, 1983

    Google Scholar 

  14. Mineura K, Yasuda T, Kowada M, Sakamoto T, Ogawa T, Shishido F, Uemura K: Positron emission tomographic evaluations in the diagnosis and therapy of multifocal glioblastoma. Pediat Neurosci 12: 208–212, 1985

    Google Scholar 

  15. Mosskin M, von Holst H, Bergstrom M, Collins VP, Eriksson L, Johnstrom P, Noren G: Positron emission tomography with11C-methionine and computed tomography of intracranial tumors compared with histopathologic examination of multiple biopsies. Acta Radiol 28: 673–681, 1987

    Google Scholar 

  16. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM: Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62: 816–822, 1985

    Google Scholar 

  17. Patronas NJ, Di Chiro G, Brooks RA, DeLaPaz RL, Kornblith PL, Smith BH, Rizzoli HV, Kessler RM, Manning RG, Channing M, Wolf AP, O'Connor CM: Work in progress: [18F]fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiol 144: 885–889, 1982

    Google Scholar 

  18. Rhodes CG, Wise RJS, Frackowiak RS, Hatazawa J, Palmer AJ, Thomas DGT, Jones T:In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14: 614–626, 1983

    Google Scholar 

  19. Tyler JL, Diksic M, Villemure JG, Evans AC, Meyer E, Yamamoto YL, Feindel W: Metabolic and hemodynamic evaluation of glioma using positron emission tomography. J Nucl Med 28: 1123–1133, 1987

    Google Scholar 

  20. Worthington C, Tyler JL, Villemure JG: Stereotaxic biopsy and positron emission tomography correlation of cerebral gliomas. Surg Neurol 27: 87–92, 1987

    Google Scholar 

  21. Mariai PH, Ferrant A, Labar D, Cogneau M, Bol A, Michel C, Michaux JL, Sokal G:In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin's lymphoma using positron emission tomography. J Nucl Med 29: 1633–1637, 1988

    Google Scholar 

  22. Abe Y, Fukuda H, Ishiwata K, Yoshioka S, Yamada K, Endo S, Kubota K, Sato T, Matsuzawa T, Takahashi T, Ido T: Studies on18F-labeled pyrimidines. Tumor uptake of18F-5-fluorouracil,18F-5-fluorouridine, and18F-5-fluorodeoxyuridine in animals. Eur J Nucl Med 8: 258–261, 1983

    Google Scholar 

  23. Ishiwata K, Ido T, Kawashima K, Murakami M, Takahashi T: Studies on18F-labeled pyrimidines II. Metabolic investigation of18F-5-fluorouracil,18F-5-fluoro-2′-deoxyuridine and18F-5-fluorouridine in rats. Eur J Nucl Med 9: 185–189, 1984

    Google Scholar 

  24. Ishiwata K, Ido T, Abe Y, Matsuzawa T, Murakami M: Studies on18F-Iabeled pyrimidines III. biochemical investigation of18F-labeled pyrimidines and comparison with3H-deoxythymidine in tumor-bearing rats and mice. Eur J Nucl Med 10: 39–44, 1985

    Google Scholar 

  25. Ishiwata K, Sato K, Kameyama M, Yoshimoto T, Ido T: Metabolic fates of 2′-deoxy-5-[18F]fluorouridine in tumor-bearing mice and human plasma. Nucl Med Biol 18: 539–545, 1991

    Google Scholar 

  26. Ishiwata K, Takahashi T, Iwata R, Tomura M, Tada M, Itoh J, Kameyama M, Ido T: Tumor diagnosis by PET: Potential of seven tracers examined in five experimental tumors including an artificial metastasis model. Nucl Med Biol 19: 611–618, 1992

    Google Scholar 

  27. Sato K, Kameyama M, Ishiwata K, Katakura R, Yoshimoto T: Metabolic changes of glioma following chemotherapy. An experimental study using four PET tracers. J Neurooncol 14: 81–89, 1992

    Google Scholar 

  28. Sato K, Kameyama M, Ishiwata K, Kayama T, Yoshimoto T, Ito M: Multicentric glioma studied with positron emission tomography. A case report. Surg Neurol 42: 14–18, 1994

    Google Scholar 

  29. Tsurumi Y, Kameyama M, Ishiwata K, Katakura R, Monma M, Ido T, Suzuki J:18F-fluoro-2′-deoxyuridine as a tracer of nucleic acid metabolism in brain tumors. J Neurosurg 72: 110–113, 1990

    Google Scholar 

  30. Phelps ME, Hoffman EJ, Huang SC, Kuhl DE: ECAT: A new computerized tomographic imaging system of positron emitting radiopharmaceuticals. J Nucl Med 19: 635–647, 1978

    Google Scholar 

  31. Spinks TJ, Guzzardi R, Bellina CR: Performance characteristics of a whole-body positron tomography. J Nucl Med 29: 1833–1841, 1988

    Google Scholar 

  32. Ishiwata K, Monma M, Iwata R, Ido T: Automated synthesis of 5-[18F]fluoro-2′-deoxyuridine. Appl Radiat Isot 38: 467–473, 1987

    Google Scholar 

  33. Blokhina NG, Vozny EK, Garin AM: Results of treatment of malignant tumors with futrafur. Cancer 30: 388–392, 1972

    Google Scholar 

  34. Marrian DH, Maxwell DR: Tracer studies of potential radiosensitizing agents. Tetrasodium 2-[C-14]-methyl-1∶4naphthohydroquinone diphosphate. Br J Cancer 10: 575–582, 1956

    Google Scholar 

  35. Moore FD, Tobin LH, Aub JC: Studies with radioactive diazo dyes. III. The distribution of radioactive dyes in tumor-bearing mice. J Clin Invest 22: 161–168, 1983

    Google Scholar 

  36. Patlak CS, Blasberg RG, Fenstermacher JD: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3: 1–7, 1983

    Google Scholar 

  37. Heiderberger C: Pyrimidines and pyrimidine nucleoside antimetabolites. In: Holland JF, Frei III (eds) Cancer Medicine, ed 2, Philadelphia, Lea & Febiger, 1982, pp 801–824

    Google Scholar 

  38. Niizuma H, Otsuki T, Yonemitsu T, Kitahara M, Katakura R, Suzuki J: Experiences with CT-guided stereotaxic biopsies in 121 cases. Acta Neurochir (Wien) S42: 157–160, 1988

    Google Scholar 

  39. Hoshino T, Nagashima T, Murovic J, Wilson CB, Edwards MSB, Gutin PH, Davis RL, DeArmond SJ: In situ cell kinetic studies on human neuroectodermal tumors with bromodeoxyuridine labeling. J Neurosurg 64: 453–459, 1986

    Google Scholar 

  40. Di Chiro G, Brooks RA: PET-FDG of untreated and treated cerebral gliomas. J Nucl Med 29: 421–422, 1988

    Google Scholar 

  41. Washiten WL, Santi DV: Assay of intracellular free and macromolecular-bound metabolites of 5-fluorodeoxyuridine and 5-fluorouracil. Cancer Res 39: 3397–3404, 1979

    Google Scholar 

  42. Ishiwata K, Tsurumi Y, Kameyama M, Sato K, Iwata R, Takahashi T, Ido T, Yoshimoto T: Brain tumor accumulation and plasma pharmacokinetic parameters of 2′-deoxy-5-fluorouridine. Ann Nucl Med 7: 199–205, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameyama, M., Ishiwata, K., Tsurumi, Y. et al. Clinical application of18F-FUdR in glioma patients — PET study of nucleic acid metabolism. J Neuro-Oncol 23, 53–61 (1995). https://doi.org/10.1007/BF01058459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01058459

Key words

Navigation