Skip to main content
Log in

Endocytosis of α1-acid glycoprotein variants and of neoglycoproteins containing mannose derivatives by a mouse hybridoma cell line (2C11–12). Comparison with mouse peritoneal macrophages

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Macrophages from various origins are known to express membrane lectins that mediate the endocytosis of mannose-bearing glycoconjugates. Most macrophage tumor cell-lines lack such receptors. In this paper we show by flow cytometry analysis that a newly generated macrophage hybridoma (2C11–12), which displays several macrophage characteristics, also expresses mannose membrane lectins, resulting in the internalization of fluoresceinylated neoglycoproteins into acidic compartments.

Thioglycolate elicited mouse peritoneal macrophages and the 2C11–12 hybridomas were compared by flow cytometry with regard to the binding and endocytosis of α1-acid glycoprotein (AGP) variants separated by affinity chromatography on immobilized concanavalin A. AGP C eluted specifically with methyl α-mannopyranoside, which contains two bi-antennary oligosaccharides, was endocytosed as mannosylated serum albumin (Man-BSA). In both types of macrophages, the fluoresceinylated ligands were internalized in acidic compartments as demonstrated by the fluorescence intensity increase upon monensin post-incubation. However the behaviour of the internalized ligands was found to be quite different. AGP C and Man-BSA were rapidly degraded by thioglycolate elicited peritoneal macrophages and excreted in the medium as small peptide fragments; conversely they remained a longer time in the 2C11–12 hybridoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stahl PD, Rodman JS, Miller MJ, Schlesinger PH (1978) Proc Natl Acad Sci USA 75:1399–1403.

    PubMed  Google Scholar 

  2. Stahl PD, Gordon S (1982) J Cell Biol 93:49–56.

    PubMed  Google Scholar 

  3. Stahl PD, Wileman TE, Diment S, Shepherd VL (1984) Biol Cell 51:215–18.

    PubMed  Google Scholar 

  4. Diment S, Leech MS, Stahl PD (1987) J Leukocyte Biol 42:485–90.

    PubMed  Google Scholar 

  5. Lombard Y, Bartholeyns J, Chokri M, Illinger D, Hartmann D, Dumont S, Kaufmann SHE, Landmann R, Loor F, Poindron P (1988) J Leukocyte Biol 44:391–401.

    PubMed  Google Scholar 

  6. Tzehoval E, Segal S, Zinberg N, Feldman M (1984) J Immunol 132:1741–47.

    PubMed  Google Scholar 

  7. De Baetselier P, Brys L, Vercauteren E, Mussche L, Hamers R, Schram E (1984) in Analytical Applications of Bioluminescence and Chemiluminescence, eds. Kricka LJ, Stanley PE, Thorpe GHG, Whitehead TP, Academic Press, New York, p 297–305.

    Google Scholar 

  8. Takeda T, Kobayashi T, Shimano T, Sekimoto M, Matsuura N, Kokunai I, Yamamoto A, Mori T (1986) J Immunopharmacol 8:499–513.

    PubMed  Google Scholar 

  9. Remels LM, De Baetselier PC (1987) Int J Cancer 39:343–52.

    PubMed  Google Scholar 

  10. Shepherd VL, Campbell EJ, Senior RM, Stahl PD (1982) J Reticulo-endothel Soc 32:423–31.

    Google Scholar 

  11. Hoppe CA, Lee YC (1983) J Biol Chem 258:14193–99.

    PubMed  Google Scholar 

  12. Tenu JP, Roche AC, Yapo A, Kieda C, Monsigny M, Petit JF (1982) Biol Cell 44:157–64.

    Google Scholar 

  13. Wileman T, Boshans RL, Schlesinger P, Stahl PD (1984) Biochem J 220:665–75.

    PubMed  Google Scholar 

  14. Maynard Y, Baenziger JU (1981) J Biol Chem 256:8063–68.

    PubMed  Google Scholar 

  15. Roche AC, Barzilay M, Midoux P, Junqua S, Sharon N, Monsigny M (1983) J Cell Biochem 22:131–40.

    PubMed  Google Scholar 

  16. Raz A, Meromsky L, Lotan R (1986) Cancer Res 46:3667–72.

    PubMed  Google Scholar 

  17. Roche AC, Midoux P, Bouchard P, Monsigny M (1985) FEBS Lett 193:63–68.

    PubMed  Google Scholar 

  18. Monsigny M, Roche AC, Midoux P (1984) Biol Cell 51:187–96.

    PubMed  Google Scholar 

  19. Midoux P, Roche AC, Monsigny M (1986) Biol Cell 58:221–26.

    PubMed  Google Scholar 

  20. Midoux P, Roche AC, Monsigny M (1987) Cytometry 8:327–34.

    PubMed  Google Scholar 

  21. Schmid K, Nimberg RB, Kimura A, Yamaguchi H, Binette DB (1977) Biochim Biophys Acta 492:291–302.

    PubMed  Google Scholar 

  22. Fournet B, Montreuil J, Strecker G, Dorland L, Haverkamp J, Vliegenthart JFG, Binette JP, Schmid K (1978) Biochemistry 17:5206–14.

    PubMed  Google Scholar 

  23. Bayard B, Kerchaert JP (1980) Biochem Biophys Res Commun 95:777–84.

    PubMed  Google Scholar 

  24. Bierhuizen MFA, De Wit M, Govers C, Ferwerda W, Koeleman C, Pos O, van Dijk W (1988) Eur J Biochem 175:387–94.

    PubMed  Google Scholar 

  25. Monsigny M, Petit C, Roche AC (1988) Anal Biochem 175:525–30.

    PubMed  Google Scholar 

  26. Bories PN, Guenounou M, Feger J, Kodari E, Agneray J, Durand G (1987) Biochem Biophys Res Commun 147:710–15.

    PubMed  Google Scholar 

  27. Stahl PD, Schlesinger PH, Sigardson E, Rodman JS, Lee YC (1980) Cell 19: 207–15.

    PubMed  Google Scholar 

  28. Diment S, Leech MS, Stahl PD (1988) J Biol Chem 263:6901–7.

    PubMed  Google Scholar 

  29. Diment S, Stahl PD (1985) J Biol Chem 260:15311–17.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimpaneau, V., Midoux, P., Durand, G. et al. Endocytosis of α1-acid glycoprotein variants and of neoglycoproteins containing mannose derivatives by a mouse hybridoma cell line (2C11–12). Comparison with mouse peritoneal macrophages. Glycoconjugate J 6, 561–574 (1989). https://doi.org/10.1007/BF01053778

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053778

Key words

Navigation