Skip to main content
Log in

Micromechanics of flow through porous media

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The present state of development of the micromechanics of (primarily two-phase) flow through porous media is briefly reviewed: the aims, approaches, results achieved and promising research trends are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ban, A. F. Bogomolova, V. A. Maksimov,et al., The Movement of Fluids in Rocks and the Effect of the Rock Properties [in Russian], Gostoptekhizdat, Moscow (1962).

    Google Scholar 

  2. G. I. Barenblatt, V. M. Entov, and V. I. Ryzhik,The Flow of Liquids and Gases in Porous Formations [in Russian], Nedra, Moscow (1984).

    Google Scholar 

  3. E. S. Romm,Structural Models of the Pore Space in Rocks [in Russian], Nedra, Moscow (1985).

    Google Scholar 

  4. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik,Theory of Fluid Flow Through Natural Rocks, Kluwer, Dordrecht (1990).

    Google Scholar 

  5. A. E. Schleidegger,The Physics of Flow Through Porous Media, Macmillan, New York (1957).

    Google Scholar 

  6. P. M. Adler,Porous Media. Geometry and Transport (1992).

  7. F. A. L. Dullien,Porous Media: Fluid Transport and Pore Structure, Academic Press, New York (1979).

    Google Scholar 

  8. Fundamentals of Fluid Transport in Porous Media, Inst. Francais Pétrol., Arles, France (1990).

  9. I. Chatzis and F. A. L. Dullien, “Modelling pore structure by 2-D and 3-D networks with application in sandstones,”J. Can Pet. Tech.,16, 1 (1977).

    Google Scholar 

  10. I. Chatzis and F. A. L. Dullien, “The modelling of mercury porosimetry and the relative permeability of mercury in sandstones using percolation theory,”Int. Chem. Eng.,25, 47 (1985).

    Google Scholar 

  11. A. Kantzas and I. Chatzis, “Network simulation of relative permeability curves using a bond correlated-size percolation model of pore structure,”Chem. Eng. Comm.,69, 191 (1988).

    Google Scholar 

  12. M. Yanuka, F. A. L. Dullien, and D. E. Elrick, “Percolation processes and porous media. 1. Geometrical and topological model of porous media using a three-dimensional joint pore size distribution,”J. Colloid Interface Sci.,112, 24 (1986).

    Google Scholar 

  13. R. A. Dawe, “Reservoir physics at the pore scale,”in:75 Years of Progress in Oil Field Science and Technology, Baalkema, Rotterdam (1990), p. 177.

    Google Scholar 

  14. D. Avnir, D. Farin, and P. Pfeifer, “Surface geometric irregularity of particulate materials: The fractal approach,”J. Colloid Interface Sci.,103, 112 (1985).

    Google Scholar 

  15. M. Sahimi and Y. C. Yortsos, “Applications of fractal geometry to porous media: a review,” SPE Paper 20476 presented at 1990 Annual Fall Meeting of Soc. Petrol. Eng. New Orleans, 23–26 September (1990), p. 25.

  16. P.-Z. Wong, “The statistical physics of sedimentary rock,”Phys. Today,41, 24 (1988).

    Google Scholar 

  17. D. H. Rothmanet al., MIT Porous Flow Project. Rep. No. 4, Massachusetts Inst. Tecnol., Cambridge, Mass. (1991).

    Google Scholar 

  18. D. H. Rothman, “Macroscopic laws for immiscible two-phase flow in porous media: Results from numerical experiments,”J. Geophys. Res.,95, 8663 (1990).

    Google Scholar 

  19. G. D. Doolen (ed.)et al., Lattice Gas Methods for Partial Differential Equations, Addison-Wesley (1990).

  20. C.-F. Tsang, “A new approach to tracer transport analysis: from fracture systems to strongly heterogeneous porous media,”Proc. Int. Workshop “Appropriate Methodologies for Development and Management of Groundwater Resources in Developing Countries,” Hyderabad, India, February 28–March 4 (1989).

  21. I. Chatzis, N. R. Morrow, and H. T. Lim, “Magnitude and detailed structure of residual oil saturation,”Soc. Pet. Eng. J.,23, 311 (1983).

    Google Scholar 

  22. J. Fatt, “The network model of porous media. 1. Capillary pressure characteristics,”Trans. AIME,207, 144 (1956).

    Google Scholar 

  23. I. Flatt, “The network model of porous media. 2. Dynamic properties of a single size tube network,”Trans. AIME,207, 60 (1956).

    Google Scholar 

  24. I. Fatt, “The network model of porous media. 3. Dynamic properties of networks with tube radius distribution,”Trans. AIME,207, 164 (1956).

    Google Scholar 

  25. V. M. Entov and É. Chen-sin, “Micromechanics of two-phase flow in porous media,” in:Numerical Methods of Solving Problems of Multiphase Incompressible Flow Through Porous Media [in Russian], Novosibirsk (1987).

  26. V. M. Entov, S. A. Zak, E. Chen-sin, and V. A. Yudin, “Micromechanics of two-phase flow through porous media,” in:Fundamentals of Fluid Transport in Porous Media, Pt. 1, IFP, Arles, France (1990), p. 87.

    Google Scholar 

  27. J. Koplik and T. J. Lasseter, “Two-phase flow in random network models of porous media,”Soc. Pet. Eng. J.,25, 89 (1985).

    Google Scholar 

  28. J. Koplik, S. Redner, and D. Wilkinson, “Transport and dispersion in random networks with percolation disorder,”Phys. Rev., A37, 2619 (1988).

    Google Scholar 

  29. R. Lenormand, “Différents mécanismes de déplacements visqueux et capillaires en milieu poreux: Diagramme de phase,”C.R. Acad. Sci. Paris,301, 247 (1985).

    Google Scholar 

  30. R. Lenormandet al., “Immiscible displacements in heterogeneous porous media: simulation with anisotropic multifractal networks and CT scanner experiments,”Fundamentals of Fluid Transport in Porous Media, Pt. 2, Inst. Franc. Petrol., Arles, France (1990), p. 101.

    Google Scholar 

  31. R. Lenormand, E. Touboul, and C. Zarcone, “Numerical models and experiments on immiscible displacements in porous media,”J. Fluid Mech.,189, 165 (1988).

    Google Scholar 

  32. R. Lenormand, C. Zarcone, and A. Sarr, “Mechanisms of the displacement of one fluid by another in a network of capillary ducts,”J. Fluid Mech.,135, 337 (1983).

    Google Scholar 

  33. A. C. Payatakes, “Dynamics of oil ganglia during immiscible displacement in water-wet porous media,”Ann. Rev, Fluid Dyn.,14, 365 (1982).

    Google Scholar 

  34. G. N. Constantinides and A. C. Payatakes, “A theoretical model of collision and coalescence of ganglia in porous media,”J. Colloid Interface Sci.,141, 486 (1991).

    Google Scholar 

  35. M. B. Panfilov and I. V. Tuvaeva, “Percolation models of fluid displacement processes in random inhomogeneous media,” Preprint No. 12 [in Russian], Institute of Problems of Oil and Gas, Moscow (1991).

    Google Scholar 

  36. K. Kantzas, I. Chatzis, and F. A. L. Dullien, “Mechanism of capillary displacement of residual oil by gravity-assisted inert-gas injection,” SPE Paper, No. 17506 (1988).

  37. F. Kalaydjian, B. Bourbiaux, and D. Guerillot, “Viscous coupling between fluid phases for two-phase flow in porous media: Theory versus experiment,”Proc. of the Fifth Europ. Symp. on IOR, Budapest, 1989, Budapest (1989). p. 717.

  38. F. Kalaudjian, “Origin and quantification of coupling between relative permeabilities for two-phase flows in porous media,”Transp. Porous Media,5, 215 (1990).

    Google Scholar 

  39. Problems of the Theory of Flow Through Porous Media and the Mechanics of Enhanced Oil Recovery Processes [in Russian], Nauka, Moscow (1987).

  40. R. A. Daweet al., “Physical modelling of transport phenomena in porous media — the pore scale,” in:Adv. Transp. Phen. in Porous Media, Martinus Nijhoff Publ., Dordrecht (1987), p. 48.

    Google Scholar 

  41. J. E. Hanssen, “Use of foams in gas flooding,” in:Recent Advances in IOR Methods in North Sea Sandstone Reservoirs, SPOR Monograph, Stavanger (1991).

  42. K. T. Chambers and C. J. Radke, “Capillary phenomena in foam flow through porous media,” N. R. Morrow (ed.), in:Interfacial Phenomena in Petroleum Recovery, Basel Marcel Dekker, New York (1990), p. 191.

    Google Scholar 

  43. S. Kirkpatrick, “Percolation and conductivity,” in:Theory and Properties of Disordered Materials [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  44. V. V. Kadet and V. I. Selyakov, “A percolation model of two-phase flow through porous media,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 88 (1987).

    Google Scholar 

  45. P. G. de Gennes, “Theory of slow biphasic flows in porous media,”Phys. Chem. Hydrodynam.,4, 175 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on a paper presented to the Fluid Mechanics Section of the Seventh Congress on Theoretical and Applied Mechanics, Moscow, August 1991.

Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 90–102, November–December, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entov, V.M. Micromechanics of flow through porous media. Fluid Dyn 27, 824–833 (1992). https://doi.org/10.1007/BF01051359

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051359

Keywords

Navigation