Skip to main content
Log in

Oxidation behavior of three commercial ODS alloys at 1200°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The isothermal-oxidation behavior of three oxide-dispersion-strengthened (ODS) alloys, viz., MA 956, ODM 751, and PM 2000, has been examined in air at 1200°C for exposure times up to 4800 hr. During exposure all the alloys formed an external scale of alpha alumina (α-Al2O3). The growth rate of alumina on MA 956 was significantly faster than that formed on ODM 751 resulting in an oxide layer which was about twice as thick after 4800 hr. The oxide-grain morphology on MA 956 was essentially equiaxed containing irregularly shaped, titanium-rich particles, whereas the oxide formed on ODM 751 was slightly finer, distinctly columnar and contained elongated yttrium-rich particles. Spalling of the oxide layer occurred after approximately 2400 hr on MA 956, whereas only slight spalling occurred on ODM 751 even after the longest exposure time. Experiments revealed that the initial surface roughness of PM 2000 can contribute significantly to spalling by enabling the growth of highly convoluted scale layers which are mechanically unstable under compressive stresses (buckling). Internal porosity is also observed in all three alloys after exposure. The pores were generally spherical with small Ti-, Al-, Y-rich particles distributed over their internal surfaces. The amount of porosity increases to a maximum and then slowly decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Klug, G. Krauss, D. K. Matlock, and F. S. Saurez,Heat Resistant Materials (Proc. Conf.), Fontana, WI, 1991, p. 61.

  2. D. Ruluff and P. E. Mcintyre,Mater. Eng. Feb., 34 (1982).

    Google Scholar 

  3. R. C. Benn,Frontiers of High Temperature Materials II (Proc. Conf.), Inco Alloy International, 1983, p. 37.

  4. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske,The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, E. Lang (ed.) (Elsevier Applied Science, 1989), p. 155.

  5. T. A. Ramanarayanan, R. Ayer, R. Petrovic-Luton, and D. P. Leta,Oxid. Met. 29, 445 (1988).

    Google Scholar 

  6. T. A. Ramanarayanan, M. Raghavan, and R. Petrovic-Luton,J. Electrochem. Soc. 131, 923 (1984).

    Google Scholar 

  7. W. J. Quadakkers,Werkst. Korros. 41, 659 (1990).

    Google Scholar 

  8. H. Nickel and W. J. Quadakkers,Heat Resistant Materials (Proc. Conf.), Fontana, WI, 1991, p. 87.

  9. M. J. Bennett, H. romary, and J. B. Price,Heat Resistant Materials (Proc. Conf.), Fontana, WI, 1991, p. 95.

  10. D. M. Macdonald,Frontiers of High Temperature Materials I (Proc. Conf.), Inco Alloy International, New York, 1991, p. 101.

    Google Scholar 

  11. G. H. Gessinger,Powder Metallurgy of Superalloys (Chap. 7) (Butterworths, 1984), p, 280.

  12. I. G. Wright and M. S. Seltzer,Met. Trans. 4, 441 (1973).

    Google Scholar 

  13. B. Lunsman,Trans. Mater. Soc. AIME 188, 995 (1950).

    Google Scholar 

  14. K. L. Luthra and L. C. Briant,Oxid. Met. 26, 397 (1986).

    Google Scholar 

  15. J. M. Francis and W. H. Whitlow,Corros. Sci. 5, 701 (1965).

    Google Scholar 

  16. H. Pfeiffer,Werkst. Korros. 8, 754 (1957).

    Google Scholar 

  17. D. P. Moon,Mater. Sci. Technol. 5, 755 (1989).

    Google Scholar 

  18. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  19. Per Kofstad,High Temperature Corrosion (Elsevier Applied Science, 1988), p. 389.

  20. A. H. Rosenstein, J. K. Tien, and W. D. Nix,Met. Trans. 17A, 151 (1986).

    Google Scholar 

  21. J. D. Whittenberger,Met. Trans. 3, 3038 (1972).

    Google Scholar 

  22. C. S. Giggins and F. S. Pettit,Met. Trans. 2, 1071 (1972).

    Google Scholar 

  23. H. D. Hendrich,New Materials by MA Techniques (Proc. Conf.), E. Artz and L. Schultz (eds.) (Calw-Hirasu, 1988), p. 217.

  24. R. Berglund and B. Jonsson,Indust. Heating 56, 10 (1989).

    Google Scholar 

  25. G. Korb,New Materials by MA Techniques (Proc. Conf.), E. Artz and L. Schultz, eds. (Claw-Hirasu, 1988), p. 175.

  26. M. J. Bennett and M. R. Haulton,High Temp. Mater. Power Eng. Part 1, 227 (1990).

    Google Scholar 

  27. P. Tomaszewicz and G. R. Wallwork,Oxid. Met. 20, 75 (1983).

    Google Scholar 

  28. M. J. Bennett and A. S. Tuson, AEA Ind. Tech. Harwell Laboratory, Report AERE R 13309.

  29. T. A. Ramanarayanan, M. Raghavan, and R. Petrovic-Luton,Oxid. Met. 22, 83 (1984).

    Google Scholar 

  30. J. Stringer,Corros. Sci. 10, 513 (1970).

    Google Scholar 

  31. K. T. Feber and A. G. Evans,Acta Met. 31, 565 (1983).

    Google Scholar 

  32. J. K. Tien and F. S. Pettit,Metal. Trans. 3, 1587 (1972).

    Google Scholar 

  33. M. J. Bennett, R. Perkins, J. B. Price, and J. A. Desport, AEA Ind. Tech. Harwell Laboratory, Report AEA-In Tec-1143, 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turker, M., Hughes, T.A. Oxidation behavior of three commercial ODS alloys at 1200°C. Oxid Met 44, 505–525 (1995). https://doi.org/10.1007/BF01051041

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051041

Key Words

Navigation